Dynamic Beam Coverage for Satellite Communications Aided by Movable-Antenna Array (2404.15643v1)
Abstract: Due to the ultra-dense constellation, efficient beam coverage and interference mitigation are crucial to low-earth orbit (LEO) satellite communication systems, while the conventional directional antennas and fixed-position antenna (FPA) arrays both have limited degrees of freedom (DoFs) in beamforming to adapt to the time-varying coverage requirement of terrestrial users. To address this challenge, we propose in this paper utilizing movable antenna (MA) arrays to enhance the satellite beam coverage and interference mitigation. Specifically, given the satellite orbit and the coverage requirement within a specific time interval, the antenna position vector (APV) and antenna weight vector (AWV) of the satellite-mounted MA array are jointly optimized over time to minimize the average signal leakage power to the interference area of the satellite, subject to the constraints of the minimum beamforming gain over the coverage area, the continuous movement of MAs, and the constant modulus of AWV. The corresponding continuous-time decision process for the APV and AWV is first transformed into a more tractable discrete-time optimization problem. Then, an alternating optimization (AO)-based algorithm is developed by iteratively optimizing the APV and AWV, where the successive convex approximation (SCA) technique is utilized to obtain locally optimal solutions during the iterations. Moreover, to further reduce the antenna movement overhead, a low-complexity MA scheme is proposed by using an optimized common APV over all time slots. Simulation results validate that the proposed MA array-aided beam coverage schemes can significantly decrease the interference leakage of the satellite compared to conventional FPA-based schemes, while the low-complexity MA scheme can achieve a performance comparable to the continuous-movement scheme.
- S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, Jan. 2020.
- C.-X. Wang, X. You, X. Gao et al., “On the road to 6G: Visions, requirements, key technologies, and testbeds,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 905–974, 2nd Quart. 2023.
- ITU-R WP5D, “Future technology trends of terrestrial international mobile telecommunications systems towards 2030 and beyond,” Nov. 2022. [Online]. Available: https://www.itu.int/pub/R-REP-M.2516
- M. Dangana, S. Ansari, Q. H. Abbasi, S. Hussain, and M. A. Imran, “Suitability of NB-IoT for indoor industrial environment: A survey and insights,” Sensors, vol. 21, no. 16, 2021.
- B. Ghena, J. Adkins, L. Shangguan, K. Jamieson, P. Levis, and P. Dutta, “Challenge: Unlicensed LPWANs are not yet the path to ubiquitous connectivity,” in International Conf. Mobile Comput. Netw., New York, NY, USA, Oct. 2019, pp. 1–12.
- L. Abouzaid, E. Sabir, H. Elbiaze, A. Errami, and O. Benhmammouch, “The meshing of the sky: Delivering ubiquitous connectivity to ground internet of things,” IEEE Internet Things J., vol. 8, no. 5, pp. 3743–3757, Mar. 2021.
- B. Di, L. Song, Y. Li, and H. V. Poor, “Ultra-dense LEO: Integration of satellite access networks into 5G and beyond,” IEEE Wireless Commun., vol. 26, no. 2, pp. 62–69, Apr. 2019.
- S. Liu, Z. Gao, Y. Wu, D. W. Kwan Ng, X. Gao, K.-K. Wong, S. Chatzinotas, and B. Ottersten, “LEO satellite constellations for 5G and beyond: How will they reshape vertical domains?” IEEE Commun. Mag., vol. 59, no. 7, pp. 30–36, Jul. 2021.
- Z. Xiao, J. Yang, T. Mao, C. Xu, R. Zhang, Z. Han, and X.-G. Xia, “LEO satellite access network (LEO-SAN) towards 6G: Challenges and approaches,” IEEE Wireless Commun., 2022, early access, DOI: 10.1109/MWC.011.2200310.
- O. B. Akan, E. Dinc, M. Kuscu, O. Cetinkaya, and B. A. Bilgin, “Internet of everything (IoE) - from molecules to the universe,” IEEE Commun. Mag., vol. 61, no. 10, pp. 122–128, Oct. 2023.
- Y. Rahmat-Samii and A. C. Densmore, “Technology trends and challenges of antennas for satellite communication systems,” IEEE Tran. Antennas Propagat., vol. 63, no. 4, pp. 1191–1204, Apr. 2015.
- S. K. Rao, “Advanced antenna technologies for satellite communications payloads,” IEEE Tran. Antennas Propagat., vol. 63, no. 4, pp. 1205–1217, Apr. 2015.
- G. He, X. Gao, L. Sun, and R. Zhang, “A review of multibeam phased array antennas as LEO satellite constellation ground station,” IEEE Access, vol. 9, pp. 147 142–147 154, 2021.
- S.-M. Moon, S. Yun, I.-B. Yom, and H. L. Lee, “Phased array shaped-beam satellite antenna with boosted-beam control,” IEEE Tran. Antennas Propagat., vol. 67, no. 12, pp. 7633–7636, Dec. 2019.
- B. Ning, T. Wang, C. Huang, Y. Zhang, and Z. Chen, “Wide-beam designs for terahertz massive MIMO: SCA-ATP and S-SARV,” IEEE Internet Things J., vol. 10, no. 12, pp. 10 857–10 869, June 2023.
- J. Ran, Y. Wu, C. Jin, P. Zhang, and W. Wang, “Dual-band multipolarized aperture-shared antenna array for Ku-/Ka-band satellite communication,” IEEE Tran. Antennas Propagat., vol. 71, no. 5, pp. 3882–3893, May 2023.
- B. Ning, Z. Tian, W. Mei, Z. Chen, C. Han, S. Li, J. Yuan, and R. Zhang, “Beamforming technologies for ultra-massive MIMO in terahertz communications,” IEEE Open J. Commun. Society, vol. 4, pp. 614–658, Feb. 2023.
- M. C. Viganö, G. Toso, P. Angeletti, I. E. Lager, A. Yarovoy, and D. Caratelli, “Sparse antenna array for earth-coverage satellite applications,” in Proc. Fourth European Conf. Antennas Propagat., Apr. 2010, pp. 1–4.
- O. M. Bucci, T. Isernia, S. Perna, and D. Pinchera, “Isophoric sparse arrays ensuring global coverage in satellite communications,” IEEE Tran. Antennas Propagat., vol. 62, no. 4, pp. 1607–1618, Apr. 2014.
- R. Deng, B. Di, S. Chen, S. Sun, and L. Song, “Ultra-dense LEO satellite offloading for terrestrial networks: How much to pay the satellite operator?” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6240–6254, Oct. 2020.
- R. Deng, B. Di, H. Zhang, L. Kuang, and L. Song, “Ultra-dense LEO satellite constellations: How many LEO satellites do we need?” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4843–4857, Aug. 2021.
- L. Zhu, W. Ma, and R. Zhang, “Movable antennas for wireless communication: Opportunities and challenges,” IEEE Commun. Mag., Oct. 16, 2023, early access, DOI: 10.1109/MCOM.001.2300212.
- L. Zhu and K.-K. Wong, “Historical review of fluid antenna and movable antenna,” arXiv preprint arXiv:2401.02362, 2024.
- K.-K. Wong, K.-F. Tong, Y. Shen, Y. Chen, and Y. Zhang, “Bruce lee-inspired fluid antenna system: Six research topics and the potentials for 6G,” Front. Comms. Net., vol. 3, no. 853416, pp. 1–31, Mar. 2022.
- L. Zhu, W. Ma, and R. Zhang, “Movable-antenna array enhanced beamforming: Achieving full array gain with null steering,” IEEE Commun. Lett., vol. 27, no. 12, pp. 3340–3344, Dec. 2023.
- W. Ma, L. Zhu, and R. Zhang, “Multi-beam forming with movable-antenna array,” IEEE Commun. Lett., vol. 28, no. 3, pp. 697–701, Mar. 2024.
- L. Zhu, W. Ma, and R. Zhang, “Modeling and performance analysis for movable antenna enabled wireless communications,” IEEE Trans. Wireless Commun., Nov. 14, 2023, early access, DOI: 10.1109/TWC.2023.3330887.
- K. K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Performance limits of fluid antenna systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2469–2472, Nov. 2020.
- W. Mei, X. Wei, B. Ning, Z. Chen, and R. Zhang, “Movable-antenna position optimization: A graph-based approach,” arXiv preprint arXiv:2403.16886, 2024.
- L. Zhu, W. Ma, Z. Xiao, and R. Zhang, “Performance analysis and optimization for movable antenna aided wideband communications,” arXiv preprint arXiv:2401.08974, 2024.
- W. Ma, L. Zhu, and R. Zhang, “MIMO capacity characterization for movable antenna systems,” IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 3392–3407, Apr. 2024.
- X. Chen, B. Feng, Y. Wu, D. W. K. Ng, and R. Schober, “Joint beamforming and antenna movement design for moveable antenna systems based on statistical CSI,” in Proc. IEEE Global Commun. Conf., Kuala Lumpur, Malaysia, Dec. 2023, pp. 4387–4392.
- L. Zhu, W. Ma, B. Ning, and R. Zhang, “Movable-antenna enhanced multiuser communication via antenna position optimization,” IEEE Trans. Wireless Commun., Dec. 12, 2023, early access, DOI: 10.1109/TWC.2023.3338626.
- Z. Xiao, X. Pi, L. Zhu, X.-G. Xia, and R. Zhang, “Multiuser communications with movable-antenna base station: Joint antenna positioning, receive combining, and power control,” arXiv preprint arXiv:2308.09512, 2023.
- Y. Wu, D. Xu, D. W. K. Ng, W. Gerstacker, and R. Schober, “Movable antenna-enhanced multiuser communication: Optimal discrete antenna positioning and beamforming,” in Proc. IEEE Global Commun. Conf., Kuala Lumpur, Malaysia, Dec. 2023, pp. 7508–7513.
- K.-K. Wong, K.-F. Tong, Y. Chen, Y. Zhang, and C.-B. Chae, “Opportunistic fluid antenna multiple access,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7819–7833, Nov. 2023.
- G. Hu, Q. Wu, K. Xu, J. Ouyang, J. Si, Y. Cai, and N. Al-Dhahir, “Fluid antennas-enabled multiuser uplink: A low-complexity gradient descent for total transmit power minimization,” IEEE Commun. Lett., 2024, early access, DOI: 10.1109/LCOMM.2024.3352664.
- H. Qin, W. Chen, Z. Li, Q. Wu, N. Cheng, and F. Chen, “Antenna positioning and beamforming design for fluid antenna-assisted multi-user downlink communications,” IEEE Wireless Commun. Lett., 2024, early access, DOI: 10.1109/LWC.2024.3360117.
- Z. Cheng, N. Li, J. Zhu, X. She, C. Ouyang, and P. Chen, “Sum-rate maximization for movable antenna enabled multiuser communications,” arXiv preprint arXiv:2309.11135, 2023.
- S. Yang, W. Lyu, B. Ning, Z. Zhang, and C. Yuen, “Flexible precoding for multi-user movable antenna communications,” IEEE Wireless Commun. Lett., 2024, early access, DOI: 10.1109/LWC.2024.3372569.
- C. Wang, G. Li, H. Zhang, K.-K. Wong, Z. Li, D. W. K. Ng, and C.-B. Chae, “Fluid antenna system liberating multiuser MIMO for ISAC via deep reinforcement learning,” IEEE Trans. Wireless Commun., 2024, early access, DOI: 10.1109/TWC.2024.3376800.
- G. Hu, Q. Wu, K. Xu, J. Si, and N. Al-Dhahir, “Secure wireless communication via movable-antenna array,” IEEE Signal Process. Lett., vol. 31, pp. 516–520, Jan. 2024.
- Z. Cheng, N. Li, J. Zhu, X. She, C. Ouyang, and P. Chen, “Enabling secure wireless communications via movable antennas,” in Proc. IEEE International Conf. Acoust., Speech, Signal Processing, Apr. 2024, pp. 9186–9190.
- J. Tang, C. Pan, Y. Zhang, H. Ren, and K. Wang, “Secure MIMO communication relying on movable antennas,” arXiv preprint arXiv:2403.04269, 2024.
- W. Ma, L. Zhu, and R. Zhang, “Compressed sensing based channel estimation for movable antenna communications,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2747–2751, Oct. 2023.
- Z. Xiao, S. Cao, L. Zhu, Y. Liu, B. Ning, X.-G. Xia, and R. Zhang, “Channel estimation for movable antenna communication systems: A framework based on compressed sensing,” IEEE Trans. Wireless Commun., 2024, early access, DOI: 10.1109/TWC.2024.3385110.
- X. Shao, Q. Jiang, and R. Zhang, “6D movable antenna based on user distribution: Modeling and optimization,” arXiv preprint arXiv:2403.08123, 2024.
- X. Shao, R. Zhang, Q. Jiang, and R. Schober, “6D movable antenna enhanced wireless network via discrete position and rotation optimization,” arXiv preprint arXiv:2403.08123, 2024.