Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction (2404.15347v1)

Published 13 Apr 2024 in eess.SP, cs.AI, and cs.LG

Abstract: Cardiovascular diseases are a pervasive global health concern, contributing significantly to morbidity and mortality rates worldwide. Among these conditions, arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges. This study introduces an innovative approach utilizing deep learning techniques, specifically Convolutional Neural Networks (CNNs), to address the complexities of arrhythmia classification. Leveraging multi-lead Electrocardiogram (ECG) data, our CNN model, comprising six layers with a residual block, demonstrates promising outcomes in identifying five distinct heartbeat types: Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Atrial Premature Contraction (APC), Premature Ventricular Contraction (PVC), and Normal Beat. Through rigorous experimentation, we highlight the transformative potential of our methodology in enhancing diagnostic accuracy for cardiovascular arrhythmias. Arrhythmia diagnosis remains a critical challenge in cardiovascular care, often relying on manual interpretation of ECG signals, which can be time-consuming and prone to subjectivity. To address these limitations, we propose a novel approach that leverages deep learning algorithms to automate arrhythmia classification. By employing advanced CNN architectures and multi-lead ECG data, our methodology offers a robust solution for precise and efficient arrhythmia detection. Through comprehensive evaluation, we demonstrate the effectiveness of our approach in facilitating more accurate clinical decision-making, thereby improving patient outcomes in managing cardiovascular arrhythmias.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube