Text2Grasp: Grasp synthesis by text prompts of object grasping parts (2404.15189v1)
Abstract: The hand plays a pivotal role in human ability to grasp and manipulate objects and controllable grasp synthesis is the key for successfully performing downstream tasks. Existing methods that use human intention or task-level language as control signals for grasping inherently face ambiguity. To address this challenge, we propose a grasp synthesis method guided by text prompts of object grasping parts, Text2Grasp, which provides more precise control. Specifically, we present a two-stage method that includes a text-guided diffusion model TextGraspDiff to first generate a coarse grasp pose, then apply a hand-object contact optimization process to ensure both plausibility and diversity. Furthermore, by leveraging LLM, our method facilitates grasp synthesis guided by task-level and personalized text descriptions without additional manual annotations. Extensive experiments demonstrate that our method achieves not only accurate part-level grasp control but also comparable performance in grasp quality.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.