Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Chain of Thought Prompting in Large Language Models via Reasoning Patterns (2404.14812v2)

Published 23 Apr 2024 in cs.CL

Abstract: Chain of Thought (CoT) prompting can encourage LLMs to engage in multi-step logical reasoning. The quality of the provided demonstrations significantly influences the success of downstream inference tasks. Current unsupervised CoT methods primarily select examples based on the semantics of the questions, which can introduce noise and lack interpretability. In this paper, we propose leveraging reasoning patterns to enhance CoT prompting effectiveness. Reasoning patterns represent the process by which LLMs arrive at their final results. By utilizing prior knowledge and prompt-based methods from large models, we first construct task-specific pattern sets. We then select diverse demonstrations based on different reasoning patterns. This approach not only mitigates the impact of noise but also provides explicit interpretability to help us understand the mechanisms of CoT. Extensive experiments demonstrate that our method is more robust and consistently leads to improvements across various reasoning tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets