Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unified Unsupervised Salient Object Detection via Knowledge Transfer (2404.14759v2)

Published 23 Apr 2024 in cs.CV

Abstract: Recently, unsupervised salient object detection (USOD) has gained increasing attention due to its annotation-free nature. However, current methods mainly focus on specific tasks such as RGB and RGB-D, neglecting the potential for task migration. In this paper, we propose a unified USOD framework for generic USOD tasks. Firstly, we propose a Progressive Curriculum Learning-based Saliency Distilling (PCL-SD) mechanism to extract saliency cues from a pre-trained deep network. This mechanism starts with easy samples and progressively moves towards harder ones, to avoid initial interference caused by hard samples. Afterwards, the obtained saliency cues are utilized to train a saliency detector, and we employ a Self-rectify Pseudo-label Refinement (SPR) mechanism to improve the quality of pseudo-labels. Finally, an adapter-tuning method is devised to transfer the acquired saliency knowledge, leveraging shared knowledge to attain superior transferring performance on the target tasks. Extensive experiments on five representative SOD tasks confirm the effectiveness and feasibility of our proposed method. Code and supplement materials are available at https://github.com/I2-Multimedia-Lab/A2S-v3.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com