Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grounded Knowledge-Enhanced Medical Vision-Language Pre-training for Chest X-Ray (2404.14750v2)

Published 23 Apr 2024 in cs.CV and cs.AI

Abstract: Medical foundation models have the potential to revolutionize healthcare by providing robust and generalized representations of medical data. Medical vision-language pre-training has emerged as a promising approach for learning domain-general representations of medical image and text. Current algorithms that exploit global and local alignment between medical image and text could however be marred by redundant information in medical data. To address this issue, we propose a grounded knowledge-enhanced medical vision-language pre-training (GK-MVLP) framework for chest X-ray. In this framework, medical knowledge was grounded to the appropriate anatomical regions by using a transformer-based grounded knowledge-enhanced module for fine-grained alignment between textural features of medical knowledge and the corresponding anatomical region-level visual features. The performance of GK-MVLP was competitive with or exceeded the state of the art on downstream image understanding tasks (chest X-ray disease classification, disease localization), generative task (report generation), and vision-language understanding task (medical visual question-answering). Our results demonstrate the advantage of incorporating grounding mechanism to remove biases and improve the alignment between chest X-ray image and radiology report.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets