Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Vul-LMGNNs: Fusing language models and online-distilled graph neural networks for code vulnerability detection (2404.14719v2)

Published 23 Apr 2024 in cs.CR

Abstract: Code LLMs (codeLMs) and Graph Neural Networks (GNNs) are widely used in code vulnerability detection. However, GNNs often rely on aggregating information from adjacent nodes, limiting structural information propagation across layers. While codeLMs can supplement GNNs with semantic information, existing integration methods underexplore their collaborative potential. To address these challenges, we propose Vul-LMGNNs, integrating pre-trained codeLMs with GNNs to enable cross-layer propagation of semantic and structural information. Vul-LMGNNs leverage Code Property Graphs (CPGs) to incorporate syntax, control flow, and data dependencies, using gated GNNs for structural extraction. An online knowledge distillation (KD) mechanism allows a student GNN to capture structural information from a trained counterpart via alternating training. Additionally, an "implicit-explicit" joint training framework leverages codeLMs to initialize embeddings and propagate code semantics. In the explicit phase, it performs late fusion via linear interpolation. Evaluations on real-world vulnerability datasets show Vul-LMGNNs outperform 17 state-of-the-art approaches. Source code is available at: https://github.com/Vul-LMGNN/vul-LMGNN.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.