Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Word Embedding with Better Distance Weighting and Window Size Scheduling (2404.14631v2)

Published 23 Apr 2024 in cs.CL and cs.LG

Abstract: Distributed word representation (a.k.a. word embedding) is a key focus in NLP. As a highly successful word embedding model, Word2Vec offers an efficient method for learning distributed word representations on large datasets. However, Word2Vec lacks consideration for distances between center and context words. We propose two novel methods, Learnable Formulated Weights (LFW) and Epoch-based Dynamic Window Size (EDWS), to incorporate distance information into two variants of Word2Vec, the Continuous Bag-of-Words (CBOW) model and the Continuous Skip-gram (Skip-gram) model. For CBOW, LFW uses a formula with learnable parameters that best reflects the relationship of influence and distance between words to calculate distance-related weights for average pooling, providing insights for future NLP text modeling research. For Skip-gram, we improve its dynamic window size strategy to introduce distance information in a more balanced way. Experiments prove the effectiveness of LFW and EDWS in enhancing Word2Vec's performance, surpassing previous state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets