Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hybrid Intersection Types for PCF (Extended Version) (2404.14340v1)

Published 22 Apr 2024 in cs.LO and cs.PL

Abstract: Intersection type systems have been independently applied to different evaluation strategies, such as call-by-name (CBN) and call-by-value (CBV). These type systems have been then generalized to different subsuming paradigms being able, in particular, to encode CBN and CBV in a unique unifying framework. However, there are no intersection type systems that explicitly enable CBN and CBV to cohabit together without making use of an encoding into a common target framework. This work proposes an intersection type system for PCF with a specific notion of evaluation, called PCFH. Evaluation in PCFH actually has a hybrid nature, in the sense that CBN and CBV operational behaviors cohabit together. Indeed, PCFH combines a CBV-like operational behavior for function application with a CBN-like behavior for recursion. This hybrid nature is reflected in the type system, which turns out to be sound and complete with respect to PCFH: not only typability implies normalization, but also the converse holds. Moreover, the type system is quantitative, in the sense that the size of typing derivations provides upper bounds for the length of the reduction sequences to normal form. This type system is then refined to a tight one, offering exact information regarding the length of normalization sequences. This is the first time that a sound and complete quantitative type system has been designed for a hybrid computational model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube