Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Windkessel calibration using optimized 0D surrogate models (2404.14187v2)

Published 22 Apr 2024 in cs.CE

Abstract: Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. E. L. Schwarz, et al. Beyond cfd: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophysics Reviews, 4(1):011301, 2023.
  2. I. E. Vignon-Clementel, et al. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering, 195(29-32):3776–3796, 2006.
  3. M. R. Pfaller, et al. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. International Journal for Numerical Methods in Biomedical Engineering, 38(10), 2022.
  4. P. J. Nair, et al. Non-invasive estimation of pressure drop across aortic coarctations: Validation of 0d and 3d computational models with in vivo measurements. Annals of Biomedical Engineering, 2024.
  5. J. Schrauwen, et al. Geometry-based pressure drop prediction in mildly diseased human coronary arteries. Journal of Biomechanics, 47(8):1810–1815, 2014.
  6. L. Garber, et al. The critical role of lumped parameter models in patient-specific cardiovascular simulations. Archives of Computational Methods in Engineering, 29(5):2977–3000, 2021.
  7. I. E. Vignon-Clementel, et al. A primer on computational simulation in congenital heart disease for the clinician. Progress in Pediatric Cardiology, 30(1-2):3–13, 2010.
  8. C. Chnafa, et al. Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. Journal of Biomechanics, 51:83–88, 2017.
  9. M. Mirramezani et al. A distributed lumped parameter model of blood flow. Annals of Biomedical Engineering, 48(12):2870–2886, 2020.
  10. R. Pewowaruk, et al. Accelerated estimation of pulmonary artery stenosis pressure gradients with distributed lumped parameter modeling vs. 3d CFD with instantaneous adaptive mesh refinement: Experimental validation in swine. Annals of Biomedical Engineering, 49(9):2365–2376, 2021.
  11. I. S. Lan, et al. Virtual transcatheter interventions for peripheral pulmonary artery stenosis in williams and alagille syndromes. Journal of the American Heart Association, 11(6), 2022.
  12. J. D. Lee, et al. A probabilistic neural twin for treatment planning in peripheral pulmonary artery stenosis. arXiv, 2023.
  13. J. S. Tran, et al. Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Computers & Fluids, 142:128–138, 2017.
  14. A. L. Marsden. Optimization in cardiovascular modeling. Annual Review of Fluid Mechanics, 46(1):519–546, 2014.
  15. G. Ninos, et al. Uncertainty quantification implementations in human hemodynamic flows. Computer Methods and Programs in Biomedicine, 203:106021, 2021.
  16. J. Nitzler, et al. A generalized probabilistic learning approach for multi-fidelity uncertainty quantification in complex physical simulations. Computer Methods in Applied Mechanics and Engineering, 400:115600, 2022.
  17. J. Biehler, et al. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a bayesian multi-fidelity scheme. Biomechanics and modeling in mechanobiology, 14:489–513, 2015.
  18. J. Biehler, et al. Multifidelity approaches for uncertainty quantification. GAMM-Mitteilungen, 42(2):e201900008, 2019.
  19. P.-S. Koutsourelakis. Accurate uncertainty quantification using inaccurate computational models. SIAM Journal on Scientific Computing, 31(5):3274–3300, 2009.
  20. D. Nolte et al. Inverse problems in blood flow modeling: A review. International Journal for Numerical Methods in Biomedical Engineering, 38(8), 2022.
  21. R. L. Spilker et al. Tuning multidomain hemodynamic simulations to match physiological measurements. Annals of Biomedical Engineering, 38(8):2635–2648, 2010.
  22. M. Ismail, et al. Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models. Journal of Computational Physics, 244:113–130, 2013.
  23. K. Menon, et al. Predictors of Myocardial Ischemia in Patients with Kawasaki Disease: Insights from Patient-Specific Simulations of Coronary Hemodynamics. Journal of Cardiovascular Translational Research, 16(5):1099–1109, 2023.
  24. K. Menon, et al. Personalized coronary and myocardial blood flow models incorporating ct perfusion imaging and synthetic vascular trees. medRxiv, 2023.
  25. S. Pant, et al. A methodological paradigm for patient-specific multi-scale CFD simulations: From clinical measurements to parameter estimates for individual analysis. International Journal for Numerical Methods in Biomedical Engineering, 30(12):1614–1648, 2014.
  26. M. Spitieris, et al. Bayesian calibration of Arterial Windkessel Model, 2022. arXiv:2201.06883 [stat].
  27. J. Seo, et al. Multifidelity estimators for coronary circulation models under clinically informed data uncertainty. International Journal for Uncertainty Quantification, 10(5):449–466, 2020.
  28. C. M. Fleeter, et al. Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Computer Methods in Applied Mechanics and Engineering, 365:113030, 2020.
  29. D. P. Bertsekas et al. Introduction to probability. Athena Scientific, 2002.
  30. J. Kaipio et al. Statistical and computational inverse problems. Number v. 160 in Applied mathematical sciences. Springer, New York, 2005.
  31. N. Chopin et al. An Introduction to Sequential Monte Carlo. Springer, 2020.
  32. N. Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539–552, 2002. Publication Title: Biometrika Volume: 89 Issue: 3.
  33. I. Vignon-Clementel, et al. Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer Methods in Biomechanics and Biomedical Engineering, 13(5):625–640, 2010.
  34. M. E. Moghadam, et al. A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. Journal of Computational Physics, 244:63–79, 2013.
  35. M. R. Pfaller, et al. On the periodicity of cardiovascular fluid dynamics simulations. Annals of Biomedical Engineering, 49(12):3574–3592, 2021.
  36. J. P. Mynard et al. A unified method for estimating pressure losses at vascular junctions. International Journal for Numerical Methods in Biomedical Engineering, 31(7), 2015.
  37. N. L. Rubio, et al. Hybrid physics-based and data-driven modeling of vascular bifurcation pressure differences. arXiv, 2024.
  38. svSolver (https://github.com/SimVascular/svSolver), 2024.
  39. M. Esmaily-Moghadam, et al. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5):1141–1152, 2013.
  40. svZeroDSolver (https://github.com/SimVascular/svZeroDSolver), 2024.
  41. svSuperEstimator (https://github.com/StanfordCBCL/svSuperEstimator), 2024.
  42. particles (https://github.com/nchopin/particles), 2023.
  43. Vascular Model Repository (https://vascularmodel.com), 2024.
  44. L. Pegolotti, et al. Learning reduced-order models for cardiovascular simulations with graph neural networks. Computers in Biology and Medicine, 168:107676, 2024.
  45. P. J. Nair, et al. Hemodynamics in patients with aortic coarctation: A comparison of in vivo 4d-flow MRI and FSI simulation. In Functional Imaging and Modeling of the Heart, pages 515–523. Springer Nature Switzerland, 2023.
  46. K. Bäumler, et al. Fluid–structure interaction simulations of patient-specific aortic dissection. Biomechanics and Modeling in Mechanobiology, 19(5):1607–1628, 2020.
  47. A. Boccadifuoco, et al. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms. Computers & Fluids, 165:96–115, 2018.
  48. M. N. Antonuccio, et al. Effects of uncertainty of outlet boundary conditions in a patient-specific case of aortic coarctation. Annals of Biomedical Engineering, 49(12):3494–3507, 2021.
  49. J. Chung et al. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α𝛼\alphaitalic_α method. Journal of Applied Mechanics, 60(2):371–375, 1993.
  50. K. E. Jansen, et al. A generalized-alpha method for integrating the filtered navier–stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(3-4):305–319, 2000.
  51. K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.
  52. D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.
Citations (2)

Summary

We haven't generated a summary for this paper yet.