Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tight Subexponential-time Algorithm for Two-Page Book Embedding (2404.14087v1)

Published 22 Apr 2024 in cs.DS and cs.CG

Abstract: A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into pages, which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2O(\qrt{n})) algorithm for computing a book embedding of an n-vertex graph on two pages -- a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. The 2-page crossing number of Knsubscript𝐾𝑛{K}_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 49(4):747–777, 2013. doi:10.1007/S00454-013-9514-0.
  2. Implementing a partitioned 2-page book embedding testing algorithm. Proc. GD 2012, 7704:79–89, 2012. doi:10.1007/978-3-642-36763-2_8.
  3. Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications, 22(4):577–606, 2018. doi:10.7155/jgaa.00479.
  4. Incremental planarity testing. Proc. FOCS 1989, pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.
  5. Two-page book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/s00453-015-0016-8.
  6. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.
  7. Parameterized algorithms for book embedding problems. Journal of Graph Algorithms and Applications, 24(4):603–620, 2020. doi:10.7155/jgaa.00526.
  8. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989. doi:10.1002/NET.3230190107.
  9. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990. doi:10.1007/BF01840379.
  10. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Information and Computation, 243:86–111, 2015. doi:10.1016/J.IC.2014.12.008.
  11. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM Journal on Algebraic Discrete Methods, 8(1):33–58, 1987. doi:10.1137/0608002.
  12. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
  13. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
  14. Fast hamiltonicity checking via bases of perfect matchings. Journal of the ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
  15. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
  16. A left-first search algorithm for planar graphs. Discrete & Computational Geometry, 13:459–468, 1995. doi:10.1007/BF02574056.
  17. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
  18. Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–810, 2010. doi:10.1007/S00453-009-9296-1.
  19. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
  20. On linear layouts of graphs. Discrete Mathematics & Theoretical Computer Science, 6(2):339–358, 2004. doi:10.46298/dmtcs.317.
  21. Graph treewidth and geometric thickness parameters. Discrete & Computational Geometry, 37(4):641–670, 2007. doi:10.1007/s00454-007-1318-7.
  22. Toshiki Endo. The pagenumber of toroidal graphs is at most seven. Discrete Mathematics, 175(1):87–96, 1997. doi:10.1016/S0012-365X(96)00144-6.
  23. Maximal flow through a network. Canadian Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.
  24. Parameterized complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021. doi:10.1016/j.artint.2017.12.006.
  25. The pagenumber of k𝑘kitalic_k-trees is O⁢(k)𝑂𝑘O(k)italic_O ( italic_k ). Discrete Applied Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.
  26. The planar hamiltonian circuit problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976. doi:10.1137/0205049.
  27. The hamiltonian augmentation problem and its applications to graph drawing. Proc. WALCOM 2010, LNCS, 5942:35–46, 2010. doi:10.1007/978-3-642-11440-3_4.
  28. Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012. doi:10.1007/S00453-012-9627-5.
  29. A linear time implementation of SPQR-trees. Proc. GD 2000, 1984:77–90, 2000. URL: https://doi.org/10.1007/3-540-44541-2_8.
  30. Inserting an edge into a planar graph. Algorithmica, 41(4):289–308, 2005. doi:10.1007/S00453-004-1128-8.
  31. Covering and coloring problems for relatives of intervals. Discrete Mathematics, 55(2):167–180, 1985. doi:10.1016/0012-365X(85)90045-7.
  32. RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties. Bulletin of Mathematical Biology, 61(3):437–467, 1999. doi:10.1006/bulm.1998.0085.
  33. Lenwood S. Heath. Embedding outerplanar graphs in small books. SIAM Journal on Algebraic Discrete Methods, 8(2):198–218, 1987. doi:10.1137/0608018.
  34. Triconnected planar graphs of maximum degree five are subhamiltonian. Proc. ESA 2019, LIPIcs, 144(58):1–14, 2019. doi:10.4230/LIPIcs.ESA.2019.58.
  35. Two-page book embedding and clustered graph planarity. Technical report, Citeseer, 2009.
  36. Simpler algorithms for testing two-page book embedding of partitioned graphs. Theoretical Computer Science, 725:79–98, 2018. doi:10.1016/J.TCS.2015.12.039.
  37. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
  38. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:10.1006/JCSS.2001.1774.
  39. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. Proc. WG 2022, 13453:287–299, 2022. doi:10.1007/978-3-031-15914-5_21.
  40. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. Proc. FOCS 2021, pages 184–192, 2021. doi:10.1109/FOCS52979.2021.00026.
  41. Germain Kreweras. Sur les partitions noncroisees d’un cycle. Discrete Mathematics, 1, 1972.
  42. Seth M. Malitz. Genus g𝑔gitalic_g graphs have pagenumber O⁢(g)𝑂𝑔O(\sqrt{g})italic_O ( square-root start_ARG italic_g end_ARG ). Journal of Algorithms, 17(1):85–109, 1994. doi:10.1006/jagm.1994.1028.
  43. Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. Treewidth, Kernels, and Algorithms, 12160:129–144, 2020. doi:10.1007/978-3-030-42071-0_10.
  44. A subexponential parameterized algorithm for directed subset traveling salesman problem on planar graphs. SIAM Journal on Computing, 51(2):254–289, 2022. doi:10.1137/19M1304088.
  45. Petra Mutzel. The SPQR-tree data structure in graph drawing. Proc. ICALP 2003, 2719:34–46, 2003. URL: https://doi.org/10.1007/3-540-45061-0_4.
  46. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.
  47. Automated rendering of multi-stranded dna complexes with pseudoknots, 2023. arXiv:2308.06392.
  48. Graph minors. x. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)90061-N.
  49. Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/JCTB.1994.1073.
  50. Rodica Simion. Noncrossing partitions. Discrete Mathematics, 217(1):367–409, 2000. doi:10.1016/S0012-365X(99)00273-3.
  51. Two-layer planarization parameterized by feedback edge set. Theoretical Computer Science, 494:99–111, 2013. doi:10.1016/J.TCS.2013.01.029.
  52. Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report, 1982. doi:10.1137/0205049.
  53. Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com