Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Tight Subexponential-time Algorithm for Two-Page Book Embedding (2404.14087v1)

Published 22 Apr 2024 in cs.DS and cs.CG

Abstract: A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into pages, which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2O(\qrt{n})) algorithm for computing a book embedding of an n-vertex graph on two pages -- a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. The 2-page crossing number of Knsubscript𝐾𝑛{K}_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 49(4):747–777, 2013. doi:10.1007/S00454-013-9514-0.
  2. Implementing a partitioned 2-page book embedding testing algorithm. Proc. GD 2012, 7704:79–89, 2012. doi:10.1007/978-3-642-36763-2_8.
  3. Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications, 22(4):577–606, 2018. doi:10.7155/jgaa.00479.
  4. Incremental planarity testing. Proc. FOCS 1989, pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.
  5. Two-page book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/s00453-015-0016-8.
  6. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.
  7. Parameterized algorithms for book embedding problems. Journal of Graph Algorithms and Applications, 24(4):603–620, 2020. doi:10.7155/jgaa.00526.
  8. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989. doi:10.1002/NET.3230190107.
  9. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990. doi:10.1007/BF01840379.
  10. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Information and Computation, 243:86–111, 2015. doi:10.1016/J.IC.2014.12.008.
  11. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM Journal on Algebraic Discrete Methods, 8(1):33–58, 1987. doi:10.1137/0608002.
  12. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
  13. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
  14. Fast hamiltonicity checking via bases of perfect matchings. Journal of the ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
  15. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
  16. A left-first search algorithm for planar graphs. Discrete & Computational Geometry, 13:459–468, 1995. doi:10.1007/BF02574056.
  17. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
  18. Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–810, 2010. doi:10.1007/S00453-009-9296-1.
  19. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
  20. On linear layouts of graphs. Discrete Mathematics & Theoretical Computer Science, 6(2):339–358, 2004. doi:10.46298/dmtcs.317.
  21. Graph treewidth and geometric thickness parameters. Discrete & Computational Geometry, 37(4):641–670, 2007. doi:10.1007/s00454-007-1318-7.
  22. Toshiki Endo. The pagenumber of toroidal graphs is at most seven. Discrete Mathematics, 175(1):87–96, 1997. doi:10.1016/S0012-365X(96)00144-6.
  23. Maximal flow through a network. Canadian Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.
  24. Parameterized complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021. doi:10.1016/j.artint.2017.12.006.
  25. The pagenumber of k𝑘kitalic_k-trees is O⁢(k)𝑂𝑘O(k)italic_O ( italic_k ). Discrete Applied Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.
  26. The planar hamiltonian circuit problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976. doi:10.1137/0205049.
  27. The hamiltonian augmentation problem and its applications to graph drawing. Proc. WALCOM 2010, LNCS, 5942:35–46, 2010. doi:10.1007/978-3-642-11440-3_4.
  28. Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012. doi:10.1007/S00453-012-9627-5.
  29. A linear time implementation of SPQR-trees. Proc. GD 2000, 1984:77–90, 2000. URL: https://doi.org/10.1007/3-540-44541-2_8.
  30. Inserting an edge into a planar graph. Algorithmica, 41(4):289–308, 2005. doi:10.1007/S00453-004-1128-8.
  31. Covering and coloring problems for relatives of intervals. Discrete Mathematics, 55(2):167–180, 1985. doi:10.1016/0012-365X(85)90045-7.
  32. RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties. Bulletin of Mathematical Biology, 61(3):437–467, 1999. doi:10.1006/bulm.1998.0085.
  33. Lenwood S. Heath. Embedding outerplanar graphs in small books. SIAM Journal on Algebraic Discrete Methods, 8(2):198–218, 1987. doi:10.1137/0608018.
  34. Triconnected planar graphs of maximum degree five are subhamiltonian. Proc. ESA 2019, LIPIcs, 144(58):1–14, 2019. doi:10.4230/LIPIcs.ESA.2019.58.
  35. Two-page book embedding and clustered graph planarity. Technical report, Citeseer, 2009.
  36. Simpler algorithms for testing two-page book embedding of partitioned graphs. Theoretical Computer Science, 725:79–98, 2018. doi:10.1016/J.TCS.2015.12.039.
  37. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
  38. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001. doi:10.1006/JCSS.2001.1774.
  39. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. Proc. WG 2022, 13453:287–299, 2022. doi:10.1007/978-3-031-15914-5_21.
  40. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. Proc. FOCS 2021, pages 184–192, 2021. doi:10.1109/FOCS52979.2021.00026.
  41. Germain Kreweras. Sur les partitions noncroisees d’un cycle. Discrete Mathematics, 1, 1972.
  42. Seth M. Malitz. Genus g𝑔gitalic_g graphs have pagenumber O⁢(g)𝑂𝑔O(\sqrt{g})italic_O ( square-root start_ARG italic_g end_ARG ). Journal of Algorithms, 17(1):85–109, 1994. doi:10.1006/jagm.1994.1028.
  43. Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. Treewidth, Kernels, and Algorithms, 12160:129–144, 2020. doi:10.1007/978-3-030-42071-0_10.
  44. A subexponential parameterized algorithm for directed subset traveling salesman problem on planar graphs. SIAM Journal on Computing, 51(2):254–289, 2022. doi:10.1137/19M1304088.
  45. Petra Mutzel. The SPQR-tree data structure in graph drawing. Proc. ICALP 2003, 2719:34–46, 2003. URL: https://doi.org/10.1007/3-540-45061-0_4.
  46. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.
  47. Automated rendering of multi-stranded dna complexes with pseudoknots, 2023. arXiv:2308.06392.
  48. Graph minors. x. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)90061-N.
  49. Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/JCTB.1994.1073.
  50. Rodica Simion. Noncrossing partitions. Discrete Mathematics, 217(1):367–409, 2000. doi:10.1016/S0012-365X(99)00273-3.
  51. Two-layer planarization parameterized by feedback edge set. Theoretical Computer Science, 494:99–111, 2013. doi:10.1016/J.TCS.2013.01.029.
  52. Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report, 1982. doi:10.1137/0205049.
  53. Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com