Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distributional Black-Box Model Inversion Attack with Multi-Agent Reinforcement Learning (2404.13860v1)

Published 22 Apr 2024 in cs.LG and cs.CR

Abstract: A Model Inversion (MI) attack based on Generative Adversarial Networks (GAN) aims to recover the private training data from complex deep learning models by searching codes in the latent space. However, they merely search a deterministic latent space such that the found latent code is usually suboptimal. In addition, the existing distributional MI schemes assume that an attacker can access the structures and parameters of the target model, which is not always viable in practice. To overcome the above shortcomings, this paper proposes a novel Distributional Black-Box Model Inversion (DBB-MI) attack by constructing the probabilistic latent space for searching the target privacy data. Specifically, DBB-MI does not need the target model parameters or specialized GAN training. Instead, it finds the latent probability distribution by combining the output of the target model with multi-agent reinforcement learning techniques. Then, it randomly chooses latent codes from the latent probability distribution for recovering the private data. As the latent probability distribution closely aligns with the target privacy data in latent space, the recovered data will leak the privacy of training samples of the target model significantly. Abundant experiments conducted on diverse datasets and networks show that the present DBB-MI has better performance than state-of-the-art in attack accuracy, K-nearest neighbor feature distance, and Peak Signal-to-Noise Ratio.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: