Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interval Abstractions for Robust Counterfactual Explanations (2404.13736v2)

Published 21 Apr 2024 in cs.LG and cs.AI

Abstract: Counterfactual Explanations (CEs) have emerged as a major paradigm in explainable AI research, providing recourse recommendations for users affected by the decisions of machine learning models. However, CEs found by existing methods often become invalid when slight changes occur in the parameters of the model they were generated for. The literature lacks a way to provide exhaustive robustness guarantees for CEs under model changes, in that existing methods to improve CEs' robustness are mostly heuristic, and the robustness performances are evaluated empirically using only a limited number of retrained models. To bridge this gap, we propose a novel interval abstraction technique for parametric machine learning models, which allows us to obtain provable robustness guarantees for CEs under a possibly infinite set of plausible model changes $\Delta$. Based on this idea, we formalise a robustness notion for CEs, which we call $\Delta$-robustness, in both binary and multi-class classification settings. We present procedures to verify $\Delta$-robustness based on Mixed Integer Linear Programming, using which we further propose algorithms to generate CEs that are $\Delta$-robust. In an extensive empirical study involving neural networks and logistic regression models, we demonstrate the practical applicability of our approach. We discuss two strategies for determining the appropriate hyperparameters in our method, and we quantitatively benchmark CEs generated by eleven methods, highlighting the effectiveness of our algorithms in finding robust CEs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets