Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

New Structures and Algorithms for Length-Constrained Expander Decompositions (2404.13446v2)

Published 20 Apr 2024 in cs.DS

Abstract: Expander decompositions form the basis of one of the most flexible paradigms for close-to-linear-time graph algorithms. Length-constrained expander decompositions generalize this paradigm to better work for problems with lengths, distances and costs. Roughly, an $(h,s)$-length $\phi$-expander decomposition is a small collection of length increases to a graph so that nodes within distance $h$ can route flow over paths of length $hs$ with congestion at most $1/\phi$. In this work, we give a close-to-linear time algorithm for computing length-constrained expander decompositions in graphs with general lengths and capacities. Notably, and unlike previous works, our algorithm allows for one to trade off off between the size of the decomposition and the length of routing paths: for any $\epsilon > 0$ not too small, our algorithm computes in close-to-linear time an $(h,s)$-length $\phi$-expander decomposition of size $m \cdot \phi \cdot n\epsilon$ where $s = \exp(\text{poly}(1/\epsilon))$. The key foundations of our algorithm are: (1) a simple yet powerful structural theorem which states that the union of a sequence of sparse length-constrained cuts is itself sparse and (2) new algorithms for efficiently computing sparse length-constrained flows.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com