Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning (2404.13421v1)

Published 20 Apr 2024 in cs.LG and cs.AI

Abstract: Federated Learning (FL) has emerged as a prominent privacy-preserving technique for enabling use cases like confidential clinical machine learning. FL operates by aggregating models trained by remote devices which owns the data. Thus, FL enables the training of powerful global models using crowd-sourced data from a large number of learners, without compromising their privacy. However, the aggregating server is a single point of failure when generating the global model. Moreover, the performance of the model suffers when the data is not independent and identically distributed (non-IID data) on all remote devices. This leads to vastly different models being aggregated, which can reduce the performance by as much as 50% in certain scenarios. In this paper, we seek to address the aforementioned issues while retaining the benefits of FL. We propose MultiConfederated Learning: a decentralized FL framework which is designed to handle non-IID data. Unlike traditional FL, MultiConfederated Learning will maintain multiple models in parallel (instead of a single global model) to help with convergence when the data is non-IID. With the help of transfer learning, learners can converge to fewer models. In order to increase adaptability, learners are allowed to choose which updates to aggregate from their peers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: