Papers
Topics
Authors
Recent
2000 character limit reached

EC-SLAM: Effectively Constrained Neural RGB-D SLAM with Sparse TSDF Encoding and Global Bundle Adjustment (2404.13346v2)

Published 20 Apr 2024 in cs.RO

Abstract: We introduce EC-SLAM, a real-time dense RGB-D simultaneous localization and mapping (SLAM) system leveraging Neural Radiance Fields (NeRF). While recent NeRF-based SLAM systems have shown promising results, they have yet to fully exploit NeRF's potential to constrain pose optimization. EC-SLAM addresses this by using sparse parametric encodings and Truncated Signed Distance Fields (TSDF) to represent the map, enabling efficient fusion, reducing model parameters, and accelerating convergence. Our system also employs a globally constrained Bundle Adjustment (BA) strategy that capitalizes on NeRF's implicit loop closure correction capability, improving tracking accuracy by reinforcing constraints on keyframes most relevant to the current optimized frame. Furthermore, by integrating a feature-based and uniform sampling strategy that minimizes ineffective constraint points for pose optimization, we reduce the impact of random sampling in NeRF. Extensive evaluations on the Replica, ScanNet, and TUM datasets demonstrate state-of-the-art performance, with precise tracking and reconstruction accuracy achieved alongside real-time operation at up to 21 Hz.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.