Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Beyond Pixel-Wise Supervision for Medical Image Segmentation: From Traditional Models to Foundation Models (2404.13239v1)

Published 20 Apr 2024 in cs.CV

Abstract: Medical image segmentation plays an important role in many image-guided clinical approaches. However, existing segmentation algorithms mostly rely on the availability of fully annotated images with pixel-wise annotations for training, which can be both labor-intensive and expertise-demanding, especially in the medical imaging domain where only experts can provide reliable and accurate annotations. To alleviate this challenge, there has been a growing focus on developing segmentation methods that can train deep models with weak annotations, such as image-level, bounding boxes, scribbles, and points. The emergence of vision foundation models, notably the Segment Anything Model (SAM), has introduced innovative capabilities for segmentation tasks using weak annotations for promptable segmentation enabled by large-scale pre-training. Adopting foundation models together with traditional learning methods has increasingly gained recent interest research community and shown potential for real-world applications. In this paper, we present a comprehensive survey of recent progress on annotation-efficient learning for medical image segmentation utilizing weak annotations before and in the era of foundation models. Furthermore, we analyze and discuss several challenges of existing approaches, which we believe will provide valuable guidance for shaping the trajectory of foundational models to further advance the field of medical image segmentation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube