Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multi Class Depression Detection Through Tweets using Artificial Intelligence (2404.13104v1)

Published 19 Apr 2024 in cs.CL and cs.AI

Abstract: Depression is a significant issue nowadays. As per the World Health Organization (WHO), in 2023, over 280 million individuals are grappling with depression. This is a huge number; if not taken seriously, these numbers will increase rapidly. About 4.89 billion individuals are social media users. People express their feelings and emotions on platforms like Twitter, Facebook, Reddit, Instagram, etc. These platforms contain valuable information which can be used for research purposes. Considerable research has been conducted across various social media platforms. However, certain limitations persist in these endeavors. Particularly, previous studies were only focused on detecting depression and the intensity of depression in tweets. Also, there existed inaccuracies in dataset labeling. In this research work, five types of depression (Bipolar, major, psychotic, atypical, and postpartum) were predicted using tweets from the Twitter database based on lexicon labeling. Explainable AI was used to provide reasoning by highlighting the parts of tweets that represent type of depression. Bidirectional Encoder Representations from Transformers (BERT) was used for feature extraction and training. Machine learning and deep learning methodologies were used to train the model. The BERT model presented the most promising results, achieving an overall accuracy of 0.96.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: