Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Bayesian Optimal Experimental Design with Normalizing Flows (2404.13056v1)

Published 8 Apr 2024 in cs.LG, cs.CE, stat.CO, stat.ME, and stat.ML

Abstract: Bayesian optimal experimental design (OED) seeks experiments that maximize the expected information gain (EIG) in model parameters. Directly estimating the EIG using nested Monte Carlo is computationally expensive and requires an explicit likelihood. Variational OED (vOED), in contrast, estimates a lower bound of the EIG without likelihood evaluations by approximating the posterior distributions with variational forms, and then tightens the bound by optimizing its variational parameters. We introduce the use of normalizing flows (NFs) for representing variational distributions in vOED; we call this approach vOED-NFs. Specifically, we adopt NFs with a conditional invertible neural network architecture built from compositions of coupling layers, and enhanced with a summary network for data dimension reduction. We present Monte Carlo estimators to the lower bound along with gradient expressions to enable a gradient-based simultaneous optimization of the variational parameters and the design variables. The vOED-NFs algorithm is then validated in two benchmark problems, and demonstrated on a partial differential equation-governed application of cathodic electrophoretic deposition and an implicit likelihood case with stochastic modeling of aphid population. The findings suggest that a composition of 4--5 coupling layers is able to achieve lower EIG estimation bias, under a fixed budget of forward model runs, compared to previous approaches. The resulting NFs produce approximate posteriors that agree well with the true posteriors, able to capture non-Gaussian and multi-modal features effectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. doi:10.1214/ss/1177009939.
  2. doi:10.1093/oso/9780199296590.001.0001.
  3. doi:10.1111/insr.12107.
  4. doi:10.1214/23-STS915.
  5. doi:10.1214/aoms/1177728069.
  6. doi:10.1198/1061860032012.
  7. doi:10.1016/j.jcp.2012.08.013.
  8. doi:10.1615/Int.J.UncertaintyQuantification.2014006730.
  9. doi:10.1016/j.cma.2013.02.017.
  10. doi:10.1016/j.jprocont.2017.03.011.
  11. doi:10.1137/21M1466499.
  12. doi:10.1016/j.cma.2018.01.053.
  13. doi:10.1109/TIT.2010.2068870.
  14. doi:10.1109/TPAMI.2020.2992934.
  15. doi:10.1007/978-3-319-11259-6_23-1.
  16. doi:10.1016/j.jcp.2012.07.022.
  17. doi:10.1007/s10208-021-09537-5.
  18. doi:10.1609/aaai.v35i9.16997.
  19. doi:10.1109/TNNLS.2020.3042395.
  20. doi:10.1109/ICASSP.2019.8683143.
  21. doi:10.1016/j.jcp.2021.110194.
  22. doi:10.1007/978-1-4757-3437-9.
  23. doi:10.1162/089976600300015015.
  24. doi:10.1016/j.mbs.2005.07.009.
  25. doi:10.1111/j.1467-9876.2009.00696.x.
  26. doi:10.1109/7.705889.
  27. doi:10.1007/s11222-011-9288-2.
  28. doi:10.1016/j.cma.2023.116304.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jiayuan Dong (5 papers)
  2. Christian Jacobsen (4 papers)
  3. Mehdi Khalloufi (3 papers)
  4. Maryam Akram (3 papers)
  5. Wanjiao Liu (2 papers)
  6. Karthik Duraisamy (61 papers)
  7. Xun Huan (30 papers)

Summary

We haven't generated a summary for this paper yet.