Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open Datasets for AI-Enabled Radio Resource Control in Non-Terrestrial Networks (2404.12813v1)

Published 19 Apr 2024 in cs.NI and eess.SP

Abstract: By effectively implementing the strategies for resource allocation, the capabilities, and reliability of non-terrestrial networks (NTN) can be enhanced. This leads to enhance spectrum utilization performance while minimizing the unmet system capacity, meeting quality of service (QoS) requirements and overall system optimization. In turn, a wide range of applications and services in various domains can be supported. However, allocating resources in a multi-constellation system with heterogeneous satellite links and highly dynamic user traffic demand pose challenges in ensuring sufficient and fair resource distribution. To mitigate these complexities and minimize the overhead, there is a growing shift towards utilizing AI for its ability to handle such problems effectively. This calls for the development of an intelligent decision-making controller using AI to efficiently manage resources in this complex environment. In this context, real-world open datasets play a pivotal role in the development of AI models addressing radio control optimization problems. As a matter of fact, acquiring suitable datasets can be arduous. Therefore, this paper identifies pertinent real-world open datasets representing realistic traffic pattern, network performances and demand for fixed and dynamic user terminals, enabling a variety of uses cases. The aim of gathering and publishing the information of these datasets are to inspire and assist the research community in crafting the advance resource management solutions. In a nutshell, this paper establishes a solid foundation of commercially accessible data, with the potential to set benchmarks and accelerate the resolution of resource allocation optimization challenges.

Summary

We haven't generated a summary for this paper yet.