Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Multi-Granularity Context Information Flow for Pavement Crack Detection (2404.12702v1)

Published 19 Apr 2024 in cs.CV

Abstract: Crack detection has become an indispensable, interesting yet challenging task in the computer vision community. Specially, pavement cracks have a highly complex spatial structure, a low contrasting background and a weak spatial continuity, posing a significant challenge to an effective crack detection method. In this paper, we address these problems from a view that utilizes contexts of the cracks and propose an end-to-end deep learning method to model the context information flow. To precisely localize crack from an image, it is critical to effectively extract and aggregate multi-granularity context, including the fine-grained local context around the cracks (in spatial-level) and the coarse-grained semantics (in segment-level). Concretely, in Convolutional Neural Network (CNN), low-level features extracted by the shallow layers represent the local information, while the deep layers extract the semantic features. Additionally, a second main insight in this work is that the semantic context should be an guidance to local context feature. By the above insights, the proposed method we first apply the dilated convolution as the backbone feature extractor to model local context, then we build a context guidance module to leverage semantic context to guide local feature extraction at multiple stages. To handle label alignment between stages, we apply the Multiple Instance Learning (MIL) strategy to align the high-level feature to the low-level ones in the stage-wise context flow. In addition, compared with these public crack datasets, to our best knowledge, we release the largest, most complex and most challenging Bitumen Pavement Crack (BPC) dataset. The experimental results on the three crack datasets demonstrate that the proposed method performs well and outperforms the current state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. J. Fang, C. Yang, Y. Shi, N. Wang, and Y. Zhao, “External attention based transunet and label expansion strategy for crack detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19 054–19 063, 2022.
  2. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  3. X. Xiang, Z. Wang, and Y. Qiao, “An improved yolov5 crack detection method combined with transformer,” IEEE Sensors Journal, vol. 22, no. 14, pp. 14 328–14 335, 2022.
  4. H. Tsuchiya, S. Fukui, Y. Iwahori, Y. Hayashi, W. Achariyaviriya, and B. Kijsirikul, “A method of data augmentation for classifying road damage considering influence on classification accuracy,” Procedia Computer Science, vol. 159, pp. 1449–1458, 2019.
  5. D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, and L. Shao, “Camouflaged object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2777–2787.
  6. Z. Li, K. Xu, J. Xie, Q. Bi, and K. Qin, “Deep multiple instance convolutional neural networks for learning robust scene representations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3685–3702, 2020.
  7. X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple instance neural networks,” Pattern Recognition, vol. 74, pp. 15–24, 2018.
  8. M. Ilse, J. M. Tomczak, and M. Welling, “Deep multiple instance learning for digital histopathology,” in Handbook of Medical Image Computing and Computer Assisted Intervention.   Elsevier, 2020, pp. 521–546.
  9. F. Liu, J. Liu, and L. Wang, “Asphalt pavement crack detection based on convolutional neural network and infrared thermography,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 145–22 155, 2022.
  10. C. Han, T. Ma, J. Huyan, X. Huang, and Y. Zhang, “Crackw-net: A novel pavement crack image segmentation convolutional neural network,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 135–22 144, 2021.
  11. W. Choi and Y.-J. Cha, “Sddnet: Real-time crack segmentation,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 8016–8025, 2019.
  12. Z. Qu, C. Cao, L. Liu, and D.-Y. Zhou, “A deeply supervised convolutional neural network for pavement crack detection with multiscale feature fusion,” IEEE transactions on neural networks and learning systems, vol. 33, no. 9, pp. 4890–4899, 2021.
  13. C. Xiang, W. Wang, L. Deng, P. Shi, and X. Kong, “Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network,” Automation in Construction, vol. 140, p. 104346, 2022.
  14. W. Song, G. Jia, H. Zhu, D. Jia, L. Gao et al., “Automated pavement crack damage detection using deep multiscale convolutional features,” Journal of Advanced Transportation, vol. 2020, 2020.
  15. Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, “Deepcrack: A deep hierarchical feature learning architecture for crack segmentation,” Neurocomputing, vol. 338, pp. 139–153, 2019.
  16. Z. Liu, X. Gu, H. Yang, L. Wang, Y. Chen, and D. Wang, “Novel yolov3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in gpr images,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 258–22 268, 2022.
  17. H. Yao, Y. Liu, X. Li, Z. You, Y. Feng, and W. Lu, “A detection method for pavement cracks combining object detection and attention mechanism,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 179–22 189, 2022.
  18. K. Hacıefendioğlu and H. B. Başağa, “Concrete road crack detection using deep learning-based faster r-cnn method,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, pp. 1–13, 2022.
  19. T. S. Tran, V. P. Tran, H. J. Lee, J. M. Flores, and V. P. Le, “A two-step sequential automated crack detection and severity classification process for asphalt pavements,” International Journal of Pavement Engineering, vol. 23, no. 6, pp. 2019–2033, 2022.
  20. R. Li, J. Yu, F. Li, R. Yang, Y. Wang, and Z. Peng, “Automatic bridge crack detection using unmanned aerial vehicle and faster r-cnn,” Construction and Building Materials, vol. 362, p. 129659, 2023.
  21. N. Yusof, M. Osman, M. Noor, A. Ibrahim, N. Tahir, and N. Yusof, “Crack detection and classification in asphalt pavement images using deep convolution neural network,” in 2018 8th IEEE international conference on control system, computing and engineering (ICCSCE).   IEEE, 2018, pp. 227–232.
  22. H. Feng, G.-s. Xu, and Y. Guo, “Multi-scale classification network for road crack detection,” IET Intelligent Transport Systems, vol. 13, no. 2, pp. 398–405, 2019.
  23. H. Wang, L. Qiu, J. Hu, and J. Zhang, “I2cnet: An intra- and inter-class context information fusion network for blastocyst segmentation,” pp. 1415–1422, 2022.
  24. L. Duan, J. Zeng, J. Pang, and J. Wang, “Pavement crack detection using multi-stage structural feature extraction model,” in 2021 IEEE International Conference on Image Processing (ICIP).   IEEE, 2021, pp. 969–973.
  25. P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. W. Cottrell, “Understanding convolution for semantic segmentation,” CoRR, vol. abs/1702.08502, 2017. [Online]. Available: http://arxiv.org/abs/1702.08502
  26. D.-P. Fan, G.-P. Ji, M.-M. Cheng, and L. Shao, “Concealed object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6024–6042, 2021.
  27. H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, and D.-P. Fan, “Camouflaged object segmentation with distraction mining,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8772–8781.
  28. Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, “Automatic road crack detection using random structured forests,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 12, pp. 3434–3445, 2016.
  29. Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “Cracktree: Automatic crack detection from pavement images,” Pattern Recognition Letters, vol. 33, no. 3, pp. 227–238, 2012.
  30. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
  31. J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao, “Focal self-attention for local-global interactions in vision transformers,” arXiv preprint arXiv:2107.00641, 2021.
  32. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  33. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  34. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  35. J. Pang, B. Xiong, P. Li, and J. Wu, “You need dilated convolution for pavement crack detection,” in 2022 China Automation Congress (CAC).   IEEE, 2022, pp. 899–904.
  36. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com