Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Soft e-Textile Sensor for Enhanced Deep Learning-based Shape Sensing of Soft Continuum Robots (2404.12627v1)

Published 19 Apr 2024 in cs.RO and cs.AI

Abstract: The safety and accuracy of robotic navigation hold paramount importance, especially in the realm of soft continuum robotics, where the limitations of traditional rigid sensors become evident. Encoders, piezoresistive, and potentiometer sensors often fail to integrate well with the flexible nature of these robots, adding unwanted bulk and rigidity. To overcome these hurdles, our study presents a new approach to shape sensing in soft continuum robots through the use of soft e-textile resistive sensors. This sensor, designed to flawlessly integrate with the robot's structure, utilizes a resistive material that adjusts its resistance in response to the robot's movements and deformations. This adjustment facilitates the capture of multidimensional force measurements across the soft sensor layers. A deep Convolutional Neural Network (CNN) is employed to decode the sensor signals, enabling precise estimation of the robot's shape configuration based on the detailed data from the e-textile sensor. Our research investigates the efficacy of this e-textile sensor in determining the curvature parameters of soft continuum robots. The findings are encouraging, showing that the soft e-textile sensor not only matches but potentially exceeds the capabilities of traditional rigid sensors in terms of shape sensing and estimation. This advancement significantly boosts the safety and efficiency of robotic navigation systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. H. El-Hussieny, I. A. Hameed, and J.-H. Ryu, “Nonlinear model predictive growth control of a class of plant-inspired soft growing robots,” IEEE Access, vol. 8, pp. 214495–214503, 2020.
  2. I. A. Seleem, H. El-Hussieny, and H. Ishii, “Recent developments of actuation mechanisms for continuum robots: a review,” International Journal of Control, Automation and Systems, vol. 21, no. 5, pp. 1592–1609, 2023.
  3. A. D. Marchese, R. K. Katzschmann, and D. Rus, “A recipe for soft fluidic elastomer robots,” Soft robotics, vol. 2, no. 1, pp. 7–25, 2015.
  4. A. Bajo and N. Simaan, “Hybrid motion/force control of multi-backbone continuum robots,” The International journal of robotics research, vol. 35, no. 4, pp. 422–434, 2016.
  5. T. Zheng, D. T. Branson, E. Guglielmino, R. Kang, G. A. Medrano Cerda, M. Cianchetti, M. Follador, I. S. Godage, and D. G. Caldwell, “Model validation of an octopus inspired continuum robotic arm for use in underwater environments,” Journal of Mechanisms and Robotics, vol. 5, no. 2, p. 021004, 2013.
  6. L. Wang and N. Simaan, “Geometric calibration of continuum robots: Joint space and equilibrium shape deviations,” IEEE Transactions on Robotics, vol. 35, no. 2, pp. 387–402, 2019.
  7. T. Kato, I. Okumura, S.-E. Song, A. J. Golby, and N. Hata, “Tendon-driven continuum robot for endoscopic surgery: Preclinical development and validation of a tension propagation model,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2252–2263, 2014.
  8. X. Zhang, W. Li, P. W. Y. Chiu, and Z. Li, “A novel flexible robotic endoscope with constrained tendon-driven continuum mechanism,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1366–1372, 2020.
  9. R. T. Samm, V. Durairajah, and S. Gobee, “Developing a fully soft robotic snake for search and rescue,” Solid State Technology, vol. 63, no. 1s, pp. 1314–1329, 2020.
  10. A. Ahmed, A. Maged, A. Soliman, H. El-Hussieny, and M. Magdy, “Space deformation based path planning for mobile robots,” ISA transactions, vol. 126, pp. 666–678, 2022.
  11. I. A. Seleem, H. El-Hussieny, and H. Ishii, “Imitation-based motion planning and control of a multi-section continuum robot interacting with the environment,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1351–1358, 2023.
  12. C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: A survey,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 8, pp. 1665–1678, 2016.
  13. A. Sorriento, M. B. Porfido, S. Mazzoleni, G. Calvosa, M. Tenucci, G. Ciuti, and P. Dario, “Optical and electromagnetic tracking systems for biomedical applications: A critical review on potentialities and limitations,” IEEE reviews in biomedical engineering, vol. 13, pp. 212–232, 2019.
  14. A. Bayoumy, A. Nada, and S. Megahed, “Methods of modeling slope discontinuities in large size wind turbine blades using absolute nodal coordinate formulation,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 228, no. 3, pp. 314–329, 2014.
  15. I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: A comprehensive review,” Optics and Lasers in Engineering, vol. 139, p. 106508, 2021.
  16. J. Avery, M. Runciman, A. Darzi, and G. P. Mylonas, “Shape sensing of variable stiffness soft robots using electrical impedance tomography,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 9066–9072, IEEE, 2019.
  17. S. Song, Z. Li, H. Yu, and H. Ren, “Electromagnetic positioning for tip tracking and shape sensing of flexible robots,” IEEE Sensors Journal, vol. 15, no. 8, pp. 4565–4575, 2015.
  18. M. Wagner, S. Schafer, C. Strother, and C. Mistretta, “4d interventional device reconstruction from biplane fluoroscopy,” Medical physics, vol. 43, no. 3, pp. 1324–1334, 2016.
  19. T. da Veiga, J. H. Chandler, P. Lloyd, G. Pittiglio, N. J. Wilkinson, A. K. Hoshiar, R. A. Harris, and P. Valdastri, “Challenges of continuum robots in clinical context: a review,” Progress in Biomedical Engineering, vol. 2, no. 3, p. 032003, 2020.
  20. D. L. Lubell, “Drawbacks and limitations of computed tomography,” Texas Heart Institute Journal, vol. 32, no. 2, p. 250, 2005.
  21. J. S. Meena, S. B. Choi, S.-B. Jung, and J.-W. Kim, “Electronic textiles: New age of wearable technology for healthcare and fitness solutions,” Materials Today Bio, p. 100565, 2023.
  22. K. Du, R. Lin, L. Yin, J. S. Ho, J. Wang, and C. T. Lim, “Electronic textiles for energy, sensing, and communication,” IScience, vol. 25, no. 5, 2022.
  23. Z. Zhou, N. Chen, H. Zhong, W. Zhang, Y. Zhang, X. Yin, and B. He, “Textile-based mechanical sensors: A review,” Materials, vol. 14, no. 20, p. 6073, 2021.
  24. E. V. Galeta, S. Ahmed, V. Parque, and H. El-Hussieny, “Design and characterization of an e-textile sensor for shape sensing of soft continuum robots,” in 2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE), pp. 1110–1115, IEEE, 2023.
  25. S. Pyo, J. Lee, W. Kim, E. Jo, and J. Kim, “Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range,” Advanced Functional Materials, vol. 29, no. 35, p. 1902484, 2019.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  27. D. Anguita, A. Ghio, S. Ridella, and D. Sterpi, “K-fold cross validation for error rate estimate in support vector machines.,” in DMIN, pp. 291–297, 2009.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Eric Vincent Galeta (1 paper)
  2. Ayman A. Nada (3 papers)
  3. Sabah M. Ahmed (1 paper)
  4. Victor Parque (13 papers)
  5. Haitham El-Hussieny (6 papers)

Summary

We haven't generated a summary for this paper yet.