Papers
Topics
Authors
Recent
2000 character limit reached

A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization

Published 18 Apr 2024 in cs.LG, math.OC, and stat.ML | (2404.12312v3)

Abstract: This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparameterized two-layer neural networks. In particular, we consider the minimax optimization problem stemming from estimating linear functional equations defined by conditional expectations, where the objective functions are quadratic in the functional spaces. We address (i) the convergence of the stochastic gradient descent-ascent algorithm and (ii) the representation learning of the neural networks. We establish convergence under the mean-field regime by considering the continuous-time and infinite-width limit of the optimization dynamics. Under this regime, the stochastic gradient descent-ascent corresponds to a Wasserstein gradient flow over the space of probability measures defined over the space of neural network parameters. We prove that the Wasserstein gradient flow converges globally to a stationary point of the minimax objective at a $O(T{-1} + \alpha{-1})$ sublinear rate, and additionally finds the solution to the functional equation when the regularizer of the minimax objective is strongly convex. Here $T$ denotes the time and $\alpha$ is a scaling parameter of the neural networks. In terms of representation learning, our results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(\alpha{-1})$, measured in terms of the Wasserstein distance. Finally, we apply our general results to concrete examples including policy evaluation, nonparametric instrumental variable regression, asset pricing, and adversarial Riesz representer estimation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 10 likes about this paper.