Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tree-Based Nonlinear Reduced Modeling (2404.12262v1)

Published 18 Apr 2024 in math.NA and cs.NA

Abstract: This paper is concerned with model order reduction of parametric Partial Differential Equations (PDEs) using tree-based library approximations. Classical approaches are formulated for PDEs on Hilbert spaces and involve one single linear space to approximate the set of PDE solutions. Here, we develop reduced models relying on a collection of linear or nonlinear approximation spaces called a library, and which can also be formulated on general metric spaces. To build the spaces of the library, we rely on greedy algorithms involving different splitting strategies which lead to a hierarchical tree-based representation. We illustrate through numerical examples that the proposed strategies have a much wider range of applicability in terms of the parametric PDEs that can successfully be addressed. While the classical approach is very efficient for elliptic problems with strong coercivity, we show that the tree-based library approaches can deal with diffusion problems with weak coercivity, convection-diffusion problems, and with transport-dominated PDEs posed on general metric spaces such as the $L2$-Wasserstein space.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.