Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Gaussian mixture model for unsupervised image segmentation (2404.12252v1)

Published 18 Apr 2024 in cs.CV

Abstract: The recent emergence of deep learning has led to a great deal of work on designing supervised deep semantic segmentation algorithms. As in many tasks sufficient pixel-level labels are very difficult to obtain, we propose a method which combines a Gaussian mixture model (GMM) with unsupervised deep learning techniques. In the standard GMM the pixel values with each sub-region are modelled by a Gaussian distribution. In order to identify the different regions, the parameter vector that minimizes the negative log-likelihood (NLL) function regarding the GMM has to be approximated. For this task, usually iterative optimization methods such as the expectation-maximization (EM) algorithm are used. In this paper, we propose to estimate these parameters directly from the image using a convolutional neural network (CNN). We thus change the iterative procedure in the EM algorithm replacing the expectation-step by a gradient-step with regard to the networks parameters. This means that the network is trained to minimize the NLL function of the GMM which comes with at least two advantages. As once trained, the network is able to predict label probabilities very quickly compared with time consuming iterative optimization methods. Secondly, due to the deep image prior our method is able to partially overcome one of the main disadvantages of GMM, which is not taking into account correlation between neighboring pixels, as it assumes independence between them. We demonstrate the advantages of our method in various experiments on the example of myocardial infarct segmentation on multi-sequence MRI images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube