Designing a sector-coupled European energy system robust to 60 years of historical weather data (2404.12178v2)
Abstract: As energy systems transform to rely on renewable energy and electrification, they encounter stronger year-to-year variability in energy supply and demand. However, most infrastructure planning is based on a single weather year, resulting in a lack of robustness. In this paper, we optimize energy infrastructure for a European energy system designed for net-zero CO$_2$ emissions in 62 different weather years. Subsequently, we fix the capacity layouts and simulate their operation in every weather year, to evaluate resource adequacy and CO$_2$ emissions abatement. We show that interannual weather variability causes variation of $\pm$10\% in total system cost. The most expensive capacity layout obtains the lowest net CO$_2$ emissions but not the highest resource adequacy. Instead, capacity layouts designed with years including compound weather events result in a more robust and cost-effective design. Deploying CO$_2$-emitting backup generation is a cost-effective robustness measure, which only increase CO$_2$ emissions marginally as the average CO$_2$ emissions remain less than 1\% of 1990 levels. Our findings highlight how extreme weather years drive investments in robustness measures, making them compatible with all weather conditions within six decades of historical weather data.
- doi:10.1016/j.energy.2018.06.222. URL https://linkinghub.elsevier.com/retrieve/pii/S036054421831288X
- doi:10.1016/j.joule.2022.04.016. URL https://www.sciencedirect.com/science/article/pii/S2542435122001830
- doi:10.1038/s41560-021-00937-z. URL https://www.nature.com/articles/s41560-021-00937-z
- doi:10.1016/j.joule.2018.06.020. URL http://www.sciencedirect.com/science/article/pii/S254243511830285X
- doi:10.1016/j.apenergy.2017.03.051. URL http://www.sciencedirect.com/science/article/pii/S0306261917302775
- doi:10.1016/j.energy.2018.08.070. URL https://linkinghub.elsevier.com/retrieve/pii/S0360544218316025
- doi:10.1038/s41560-018-0128-x. URL https://www.nature.com/articles/s41560-018-0128-x
- doi:10.1016/j.joule.2021.07.017. URL https://www.sciencedirect.com/science/article/pii/S254243512100355X
- doi:10.1016/j.eneco.2022.106496. URL https://www.sciencedirect.com/science/article/pii/S0140988322006259
- doi:10.1088/1748-9326/ac4dc8.
- doi:10.1002/met.2141. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/met.2141
- doi:10.1155/2020/5481010. URL https://www.hindawi.com/journals/jre/2020/5481010/
- doi:10.1038/s41560-022-00994-y.
- doi:https://doi.org/10.1016/j.renene.2018.02.130. URL https://www.sciencedirect.com/science/article/pii/S0960148118302829
- doi:https://doi.org/10.1016/j.apenergy.2016.08.188. URL https://www.sciencedirect.com/science/article/pii/S0306261916312971
- doi:10.1038/s41558-022-01520-4. URL https://doi.org/10.1038/s41558-022-01520-4
- doi:https://doi.org/10.1016/j.apenergy.2024.122695. URL https://www.sciencedirect.com/science/article/pii/S0306261924000783
- doi:https://doi.org/10.1016/j.apenergy.2018.10.055. URL https://www.sciencedirect.com/science/article/pii/S0306261918316155
- doi:https://doi.org/10.1016/j.isci.2021.102999. URL https://www.sciencedirect.com/science/article/pii/S2589004221009676
- doi:10.1038/s41560-023-01260-5.
- doi:https://doi.org/10.1016/j.apenergy.2023.120885. URL https://www.sciencedirect.com/science/article/pii/S0306261923002490
- doi:https://doi.org/10.1016/j.energy.2017.12.051. URL https://www.sciencedirect.com/science/article/pii/S0360544217320844
- doi:10.1016/j.joule.2023.06.016. URL https://www.sciencedirect.com/science/article/pii/S2542435123002660
- doi:https://doi.org/10.1016/j.ijhydene.2018.05.169. URL https://www.sciencedirect.com/science/article/pii/S0360319918317737
- arXiv:2004.11009, doi:10.1038/s41467-020-20015-4. URL http://arxiv.org/abs/2004.11009
- doi:10.1002/met.2089.
- doi:https://doi.org/10.1016/j.joule.2023.10.001. URL https://www.sciencedirect.com/science/article/pii/S2542435123004075
- doi:https://doi.org/10.1016/j.joule.2020.07.007. URL https://www.sciencedirect.com/science/article/pii/S2542435120303251
- doi:https://doi.org/10.1016/j.enpol.2020.111386. URL https://www.sciencedirect.com/science/article/pii/S0301421520301403
- doi:10.5194/wes-7-2373-2022. URL https://wes.copernicus.org/articles/7/2373/2022/
- doi:10.5194/esd-12-1099-2021. URL https://esd.copernicus.org/articles/12/1099/2021/
- doi:10.1007/s10113-013-0499-2.
- ENTSO-E, Tyndp 2018 (2018). URL https://tyndp.entsoe.eu/tyndp2018/
- doi:10.21105/joss.03294. URL https://doi.org/10.21105/joss.03294
- doi:10.24381/cds.adbb2d47.
- Open energy modelling framework (oemof) developing group, open energy modelling framework (oemof) demandlib documentation - bdew (2016). URL https://demandlib.readthedocs.io/en/latest/index.html#
- doi:10.2905/JRC-10110-10001. URL http://data.europa.eu/89h/jrc-10110-10001
- doi:https://doi.org/10.1016/j.renene.2022.06.150. URL https://www.sciencedirect.com/science/article/pii/S0960148122009910
- doi:10.1038/s41467-021-25504-8.