PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests (2404.12064v2)
Abstract: Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$2$ across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
- Ministerial Conference on the Protection of Forests in Europe (FOREST EUROPE), “State of Europe’s forests 2020,” 2020. [Online]. Available: https://foresteurope.org/state-of-europes-forests/
- R. J. Keenan, “Climate change impacts and adaptation in forest management: A review,” Annals of Forest Science, vol. 72, pp. 145–167, 3 2015. [Online]. Available: https://doi.org/10.1007/s13595-014-0446-5
- Institut national de l’information géographique et forestière (IGN). (2018) BD Forêt [Database]. [Online]. Available: https://geoservices.ign.fr/bdforet
- S. Holzwarth, F. Thonfeld, S. Abdullahi, S. Asam, E. D. P. Canova, U. Gessner, J. Huth, T. Kraus, B. Leutner, and C. Kuenzer, “Earth observation based monitoring of forests in germany: A review,” Remote Sensing, vol. 12, p. 3570, 10 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/21/3570
- S. Ahlswede, C. Schulz, C. Gava, P. Helber, B. Bischke, M. Förster, F. Arias, J. Hees, B. Demir, and B. Kleinschmit, “Treesatai benchmark archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing,” Earth System Science Data, vol. 15, pp. 681–695, 2023. [Online]. Available: https://essd.copernicus.org/articles/15/681/2023/
- E. R. Lines, K. Calders, M. Miltiadou, S. Puliti, M. Allen, A. Debus, A. Noach, C. Cabo, S. W. D. Grieve, and H. J. F. Owen, “AI applications in forest monitoring need remote sensing benchmark datasets,” Arxiv, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2212.09937
- A. Ouaknine, T. Kattenborn, E. Laliberté, and D. Rolnick, “OpenForest: A data catalogue for machine learning in forest monitoring,” Arxiv, 10 2023. [Online]. Available: http://arxiv.org/abs/2311.00277
- H. Weiser, J. Schäfer, L. Winiwarter, N. Krašovec, C. Seitz, M. Schimka, K. Anders, D. Baete, A. S. Braz, J. Brand, D. Debroize, P. Kuss, L. L. Martin, A. Mayer, T. Schrempp, L.-M. Schwarz, V. Ulrich, F. E. Fassnacht, and B. Höfle, “Terrestrial, UAV-borne, and airborne laser scanning point clouds of central european forest plots, Germany, with extracted individual trees and manual forest inventory measurements,” 2022. [Online]. Available: https://doi.org/10.1594/PANGAEA.942856
- S. Briechle, P. Krzystek, and G. Vosselman, “Classification of tree species and standing dead trees by fusing UAV-based lidar data and multispectral imagery in the 3D deep neural network Pointnet++,” vol. 5. Copernicus GmbH, 8 2020, pp. 203–210. [Online]. Available: https://isprs-annals.copernicus.org/articles/V-2-2020/203/2020/
- M. Liu, Z. Han, Y. Chen, Z. Liu, and Y. Han, “Tree species classification of LiDAR data based on 3D deep learning,” Measurement: Journal of the International Measurement Confederation, vol. 177, 6 2021. [Online]. Available: https://doi.org/10.1016/j.measurement.2021.109301
- Y. Lv, Y. Zhang, S. Dong, L. Yang, Z. Zhang, Z. Li, and S. Hu, “A convex hull-based feature descriptor for learning tree species classification from ALS point clouds,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2 2022. [Online]. Available: https://doi.org/10.1109/LGRS.2021.3055773
- B. Liu, H. Huang, Y. Su, S. Chen, Z. Li, E. Chen, and X. Tian, “Tree species classification using ground-based LiDAR data by various point cloud deep learning methods,” Remote Sensing, vol. 14, 11 2022. [Online]. Available: https://doi.org/10.3390/rs14225733
- S. Graves, J. Gearhart, and S. Marconi, “IDTReeS - ECODSE Competition training set [dataset],” 2017. [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.867645
- J.-F. Tremblay, M. Béland, R. Gagnon, P. Giguère, and F. Pomerleau, “The Montmorency Dataset: 3D mapping for robotic forest inventory [dataset],” 2020. [Online]. Available: https://norlab.ulaval.ca/research/montmorencydataset
- Institut national de l’information géographique et forestière (IGN), “Inventaire Forestier National - Mémento 2023,” 2023. [Online]. Available: https://inventaire-forestier.ign.fr/IMG/pdf/memento_2023.pdf
- ——. (2023) Lidar HD [Database]. [Online]. Available: https://geoservices.ign.fr/documentation/donnees/alti/lidarhd
- ——. (2023) ORTHO HR [Database]. [Online]. Available: https://geoservices.ign.fr/bdortho
- ——, “French national forest inventory, annual campaigns 2005 and following [raw data].” [Online]. Available: https://inventaire-forestier.ign.fr/dataifn/
- L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and S. Savarese, “SEGCloud: Semantic segmentation of 3D point clouds,” Arxiv, 10 2017. [Online]. Available: http://arxiv.org/abs/1710.07563
- A. Boulch, J. Guerry, B. L. Saux, and N. Audebert, “SnapNet: 3d point cloud semantic labeling with 2d deep segmentation networks,” Computers and Graphics (Pergamon), vol. 71, pp. 189–198, 4 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0097849317301942
- E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Guseb, D. Aouada, and B. Ottersten, “A survey on deep learning advances on different 3d data representations,” Arxiv, 2019. [Online]. Available: https://doi.org/10.48550/arXiv.1808.01462
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” Arxiv, 12 2016. [Online]. Available: http://arxiv.org/abs/1612.00593
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” Arxiv, 6 2017. [Online]. Available: http://arxiv.org/abs/1706.02413
- Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “RandLA-Net: Efficient semantic segmentation of large-scale point clouds,” Arxiv, 11 2019. [Online]. Available: http://arxiv.org/abs/1911.11236
- Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic Graph CNN for learning on point clouds,” ACM Transactions on Graphics, vol. 38, 10 2019. [Online]. Available: https://doi.org/10.48550/arXiv.1801.07829
- M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “PCT: Point Cloud Transformer,” Arxiv, 12 2020. [Online]. Available: http://arxiv.org/abs/2012.09688http://dx.doi.org/10.1007/s41095-021-0229-5
- L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic segmentation with Superpoint Graphs,” Arxiv, 11 2017. [Online]. Available: http://arxiv.org/abs/1711.09869
- D. Robert, H. Raguet, and L. Landrieu, “Efficient 3D semantic segmentation with Superpoint Transformer,” Arxiv, 6 2023. [Online]. Available: http://arxiv.org/abs/2306.08045
- H. Zhong, Z. Zhang, H. Liu, J. Wu, and W. Lin, “Individual tree species identification for complex coniferous and broad-leaved mixed forests based on deep learning combined with UAV LiDAR data and RGB images,” Forests, vol. 15, 2 2024. [Online]. Available: http://dx.doi.org/10.3390/f15020293
- C. Gaydon, “Myria3D: Deep learning for the semantic segmentation of aerial lidar point clouds [software],” 2022. [Online]. Available: https://github.com/IGNF/myria3d
- W. Falcon and T. P. team, “Pytorch lightning [python library],” 3 2019.
- M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” 5 2019. [Online]. Available: https://github.com/pyg-team/pytorch_geometric
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 12 2015. [Online]. Available: http://arxiv.org/abs/1512.03385