Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Transmitter and Receiver Design for Movable Antenna Enhanced Multicast Communications (2404.11881v4)

Published 18 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Movable antenna (MA) is an emerging technology that utilizes localized antenna movement to achieve better channel conditions for enhancing communication performance. In this paper, we study the MA-enhanced multicast transmission from a base station equipped with multiple MAs to multiple groups of single-MA users. Our goal is to maximize the minimum weighted signal-to-interference-plus-noise ratio (SINR) among all the users by jointly optimizing the position of each transmit/receive MA and the transmit beamforming. To tackle this challenging problem, we first consider the single-group scenario and propose an efficient algorithm based on the techniques of alternating optimization and successive convex approximation. Particularly, when optimizing transmit or receive MA positions, we construct a concave lower bound for the signal-to-noise ratio (SNR) of each user using only the second-order Taylor expansion, which simplifies the problem-solving process compared to the existing two-step approximation method. The proposed design is then extended to the general multi-group scenario. Simulation results show that the proposed algorithm converges faster than the existing two-step approximation method, achieving a 3.4% enhancement in max-min SNR. Moreover, it can improve the max-min SNR/SINR by up to 22.5%, 181.7%, and 343.9% compared to benchmarks employing only receive MAs, only transmit MAs, and both transmit and receive FPAs, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-wave massive MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 836–869, 2nd Quart. 2017.
  2. E. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.
  3. A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of MIMO communications-a key to gigabit wireless,” Proc. IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004.
  4. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.
  5. L. Zhu, W. Ma, and R. Zhang, “Modeling and performance analysis for movable antenna enabled wireless communications,” IEEE Trans. Wireless Commun., Nov. 2023, early access, doi: 10.1109/TWC.2023.3330887.
  6. W. Ma, L. Zhu, and R. Zhang, “MIMO capacity characterization for movable antenna systems,” IEEE Trans. Wireless Commun., Sep. 2023, early access, doi:10.1109/TWC.2023.3307696.
  7. L. Zhu, W. Ma, and R. Zhang, “Movable antennas for wireless communication: Opportunities and challenges,” IEEE Commun. Mag., Oct. 2023, early access, doi: 10.1109/MCOM.001.2300212.
  8. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., Mar. 2021.
  9. K. K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Performance limits of fluid antenna systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2469–2472, Nov. 2020.
  10. A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,” IEEE Microwave Mag.,, vol. 5, no. 1, pp. 46–56, Mar. 2004.
  11. S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, Oct. 2004.
  12. X. Chen, B. Feng, Y. Wu, D. W. K. Ng, and R. Schober, “Joint beamforming and antenna movement design for moveable antenna systems based on statistical CSI,” in Proc. IEEE GLOBECOM.   IEEE, 2023, pp. 4387–4392.
  13. Y. Ye, L. You, J. Wang, H. Xu, K.-K. Wong, and X. Gao, “Fluid antenna-assisted MIMO transmission exploiting statistical CSI,” IEEE Commun. Lett., Jan. 2024.
  14. Z. Cheng, N. Li, J. Zhu, X. She, C. Ouyang, and P. Chen, “Enabling secure wireless communications via movable antennas,” in Proc. IEEE ICASSP, Mar. 2024, pp. 9186–9190.
  15. J. Tang, C. Pan, Y. Zhang, H. Ren, and K. Wang, “Secure MIMO communication relying on movable antennas,” 2024, arXiv: 2403.04269. [Online]. Available: https://arxiv.org/abs/2403.04269
  16. G. Hu, Q. Wu, K. Xu, J. Si, and N. Al-Dhahir, “Secure wireless communication via movable-antenna array,” IEEE Signal Process. Lett., vol. 31, pp. 516–520, Jan. 2024.
  17. G. Hu, Q. Wu, D. Xu, K. Xu, J. Si, Y. Cai, and N. Al-Dhahir, “Movable antennas-assisted secure transmission without eavesdroppers’ instantaneous CSI,” 2024,arXiv: 2404.03395. [Online]. Available: https://arxiv.org/abs/2404.03395
  18. L. Zhu, W. Ma, Z. Xiao, and R. Zhang, “Performance analysis and optimization for movable antenna aided wideband communications,” 2024, arXiv: 2401.08974. [Online]. Available: https://arxiv.org/abs/2401.08974
  19. L. Zhu, W. Ma, B. Ning, and R. Zhang, “Movable-antenna enhanced multiuser communication via antenna position optimization,” IEEE Trans. Wireless Commun., Dec. 2023, early access, doi: 10.1109/TWC.2023.3338626.
  20. G. Hu, Q. Wu, K. Xu, J. Ouyang, J. Si, Y. Cai, and N. Al-Dhahir, “Movable-antenna array enabled multiuser uplink: A low-complexity gradient descent for total transmit power minimization,” 2023, arXiv: 2312.05763. [Online]. Available: https://arxiv.org/abs/2312.05763
  21. Z. Xiao, X. Pi, L. Zhu, X.-G. Xia, and R. Zhang, “Multiuser communications with movable-antenna base station: Joint antenna positioning, receive combining, and power control,” 2023, arXiv: 2308.09512. [Online]. Available: https://arxiv.org/abs/2308.09512
  22. Y. Sun, H. Xu, C. Ouyang, and H. Yang, “Sum-rate optimization for RIS-aided multiuser communications with movable antenna,” 2023, arXiv: 2311.06501. [Online]. Available: https://arxiv.org/abs/2311.06501
  23. G. Hu, Q. Wu, J. Ouyang, K. Xu, Y. Cai, and N. Al-Dhahir, “Movable-antenna array-enabled wireless communication with CoMP reception,” 2023, arXiv: 2311.11814. [Online]. Available: https://arxiv.org/abs/2311.11814
  24. Z. Cheng, N. Li, J. Zhu, X. She, C. Ouyang, and P. Chen, “Sum-rate maximization for fluid antenna enabled multiuser communications,” IEEE Commun. Lett., Mar. 2024, early access, doi: 10.1109/LCOMM.2024.3378272.
  25. H. Qin, W. Chen, Z. Li, Q. Wu, N. Cheng, and F. Chen, “Antenna positioning and beamforming design for fluid antenna-assisted multi-user downlink communications,” IEEE Wireless Commun. Lett., Apr. 2024.
  26. S. Yang, W. Lyu, B. Ning, Z. Zhang, and C. Yuen, “Flexible precoding for multi-user movable antenna communications,” 2024, arXiv: 2402.18847. [Online]. Available: https://arxiv.org/abs/2402.18847
  27. C. Weng, Y. Chen, L. Zhu, and Y. Wang, “Learning-based joint beamforming and antenna movement design for movable antenna systems,” 2024, arXiv: 2404.01784. [Online]. Available: https://arxiv.org/abs/2404.01784
  28. W. Mei, X. Wei, B. Ning, Z. Chen, and R. Zhang, “Movable-antenna position optimization: A graph-based approach,” 2024, arXiv: 2403.16886. [Online]. Available: https://arxiv.org/abs/2403.16886
  29. Y. Zhang, Y. Zhang, L. Zhu, S. Xiao, W. Tang, Y. C. Eldar, and R. Zhang, “Movable antenna-aided hybrid beamforming for multi-user communications,” 2024, arXiv: 2404.00953. [Online]. Available: https://arxiv.org/abs/2404.00953
  30. Y. Wu, D. Xu, D. W. K. Ng, W. Gerstacker, and R. Schober, “Movable antenna-enhanced multiuser communication: Jointly optimal discrete antenna positioning and beamforming,” in Proc. IEEE GLOBECOM.   IEEE, Dec. 2023, pp. 7508–7513.
  31. B. Lyu, H. Liu, W. Hong, S. Gong, and F. Tian, “Primary rate maximization in movable antennas empowered symbiotic radio communications,” 2023, arXiv: 2403.14943. [Online]. Available: https://arxiv.org/abs/2403.14943
  32. J. Ding, Z. Zhou, C. Wang, W. Li, L. Lin, and B. Jiao, “Secure full-duplex communication via movable antennas,” 2023, arXiv: 2403.20025. [Online]. Available: https://arxiv.org/abs/2403.20025
  33. H. Wang, Q. Wu, and W. Chen, “Movable antenna enabled interference network: Joint antenna position and beamforming design,” 2024, arXiv: 2403.13573. [Online]. Available: https://arxiv.org/abs/2403.13573
  34. W. Ma, L. Zhu, and R. Zhang, “Compressed sensing based channel estimation for movable antenna communications,” IEEE Commun. Lett., Oct. 2023.
  35. Z. Xiao, S. Cao, L. Zhu, Y. Liu, X.-G. Xia, and R. Zhang, “Channel estimation for movable antenna communication systems: A framework based on compressed sensing,” 2023, arXiv: 2312.06969. [Online]. Available: https://arxiv.org/abs/2312.06969
  36. Z. Zhang, J. Zhu, L. Dai, and R. W. Heath Jr, “Successive bayesian reconstructor for channel estimation in flexible antenna systems,” 2023, arXiv: 2312.06551. [Online]. Available: https://arxiv.org/abs/2312.06551
  37. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
  38. Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.
  39. K. Wang, A. M. So, T. Chang et al., “Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.
  40. H. Joudeh and B. Clerckx, “Rate-splitting for max-min fair multigroup multicast beamforming in overloaded systems,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7276–7289, Nov. 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ying Gao (49 papers)
  2. Qingqing Wu (263 papers)
  3. Wen Chen (319 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.