Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Dynamic Bipedal Jumping via Real-time Variable-model Optimization (2404.11807v2)

Published 18 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Dynamic and continuous jumping remains an open yet challenging problem in bipedal robot control. Real-time planning with full body dynamics over the entire jumping trajectory presents unsolved challenges in computation burden. In this paper, we propose a novel variable-model optimization approach, a unified framework of variable-model trajectory optimization (TO) and variable-frequency Model Predictive Control (MPC), to effectively realize continuous and robust jumping planning and control on HECTOR bipedal robot in real-time. The proposed TO fuses variable-fidelity dynamics modeling of bipedal jumping motion in different jumping phases to balance trajectory accuracy and real-time computation efficiency. In addition, conventional fixed-frequency control approaches suffer from unsynchronized sampling frequencies, leading to mismatched modeling resolutions. We address this by aligning the MPC sampling frequency with the variable-model TO trajectory resolutions across different phases. In hardware experiments, we have demonstrated robust and dynamic jumps covering a distance of up to 40 cm (57% of robot height). To verify the repeatability of this experiment, we run 53 jumping experiments and achieve 90% success rate. In continuous jumps, we demonstrate continuous bipedal jumping with terrain height perturbations (up to 5 cm) and discontinuities (up to 20 cm gap).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Q. Nguyen, A. Agrawal, W. Martin, H. Geyer, and K. Sreenath, “Dynamic bipedal locomotion over stochastic discrete terrain,” The International Journal of Robotics Research, vol. 37, no. 13-14, pp. 1537–1553, 2018.
  2. D. Kim, S. J. Jorgensen, J. Lee, J. Ahn, J. Luo, and L. Sentis, “Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 936–956, 2020.
  3. Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement learning for robust parameterized locomotion control of bipedal robots,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2811–2817, IEEE, 2021.
  4. G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-adaptive, alip-based bipedal locomotion controller via model predictive control and virtual constraints,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6724–6731, IEEE, 2022.
  5. Z. Gu, Y. Zhao, Y. Chen, R. Guo, J. K. Leestma, G. S. Sawicki, and Y. Zhao, “Robust-locomotion-by-logic: Perturbation-resilient bipedal locomotion via signal temporal logic guided model predictive control,” arXiv preprint arXiv:2403.15993, 2024.
  6. M. Vukobratović, B. Borovac, and D. Šurdilović, “Zero moment point-proper interpretation and new applications,” in Int. Conf. on Humanoid Robots, pp. 237–244, 2001.
  7. C. L. Vaughan, “Theories of bipedal walking: an odyssey,” Journal of biomechanics, vol. 36, no. 4, pp. 513–523, 2003.
  8. https://www.youtube.com/watch?v=tF4DML7FIWk, “Atlas |||| partner in parkour,”
  9. https://www.youtube.com/watch?v=V1LyWsiTgms, “Unitree h1 the world’s first full-size motor drive humanoid robot flips on ground,”
  10. Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim, “Optimized jumping on the mit cheetah 3 robot,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 7448–7454, IEEE, 2019.
  11. M. Chignoli, S. Morozov, and S. Kim, “Rapid and reliable quadruped motion planning with omnidirectional jumping,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 6621–6627, IEEE, 2022.
  12. Y. Ding, C. Li, and H.-W. Park, “Kinodynamic motion planning for multi-legged robot jumping via mixed-integer convex program,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3998–4005, IEEE, 2020.
  13. G. Bellegarda, M. Shafiee, M. E. Özberk, and A. Ijspeert, “Quadruped-frog: Rapid online optimization of continuous quadruped jumping,” arXiv preprint arXiv:2403.06954, 2024.
  14. M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit humanoid robot: Design, motion planning, and control for acrobatic behaviors,” in 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pp. 1–8, IEEE, 2021.
  15. P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid behaviors through task-space control with conic optimization,” in 2013 IEEE International Conference on Robotics and Automation, pp. 3103–3109, IEEE, 2013.
  16. X. Xiong and A. D. Ames, “Bipedal hopping: Reduced-order model embedding via optimization-based control,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3821–3828, IEEE, 2018.
  17. J. Zhang, J. Shen, Y. Liu, and D. Hong, “Design of a jumping control framework with heuristic landing for bipedal robots,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8502–8509, IEEE, 2023.
  18. W. Yang and M. Posa, “Impact invariant control with applications to bipedal locomotion,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5151–5158, IEEE, 2021.
  19. D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,” Autonomous robots, vol. 35, no. 2, pp. 161–176, 2013.
  20. A. Herzog, S. Schaal, and L. Righetti, “Structured contact force optimization for kino-dynamic motion generation,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2703–2710, IEEE, 2016.
  21. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
  22. C. Nguyen and Q. Nguyen, “Contact-timing and trajectory optimization for 3d jumping on quadruped robots,” in 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 11994–11999, IEEE, 2022.
  23. H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive control of robotic systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3373–3380, 2021.
  24. H. Li and P. M. Wensing, “Cafe-mpc: A cascaded-fidelity model predictive control framework with tuning-free whole-body control,” arXiv preprint arXiv:2403.03995, 2024.
  25. N. Csomay-Shanklin, V. D. Dorobantu, and A. D. Ames, “Nonlinear model predictive control of a 3d hopping robot: Leveraging lie group integrators for dynamically stable behaviors,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 12106–12112, IEEE, 2023.
  26. J. Li and Q. Nguyen, “Dynamic walking of bipedal robots on uneven stepping stones via adaptive-frequency MPC,” IEEE Control Systems Letters, 2023.
  27. J. Li, J. Ma, O. Kolt, M. Shah, and Q. Nguyen, “Dynamic loco-manipulation on hector: Humanoid for enhanced control and open-source research,” arXiv preprint arXiv:2312.11868, 2023.
  28. DRCL-USC, “https://github.com/DRCL-USC/Hector_Simulation.”
  29. P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, “Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots,” Ieee transactions on robotics, vol. 33, no. 3, pp. 509–522, 2017.
  30. J. Li and Q. Nguyen, “Force-and-moment-based model predictive control for achieving highly dynamic locomotion on bipedal robots,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 1024–1030, IEEE, 2021.
  31. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the mit cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9, IEEE, 2018.
  32. Y. Ding, C. Khazoom, M. Chignoli, and S. Kim, “Orientation-aware model predictive control with footstep adaptation for dynamic humanoid walking,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), pp. 299–305, IEEE, 2022.
  33. S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5107–5112, IEEE, 2015.
  34. C. Nguyen, L. Bao, and Q. Nguyen, “Continuous jumping for legged robots on stepping stones via trajectory optimization and model predictive control,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 93–99, IEEE, 2022.
  35. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com