Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Predicting Long-horizon Futures by Conditioning on Geometry and Time (2404.11554v1)

Published 17 Apr 2024 in cs.CV

Abstract: Our work explores the task of generating future sensor observations conditioned on the past. We are motivated by `predictive coding' concepts from neuroscience as well as robotic applications such as self-driving vehicles. Predictive video modeling is challenging because the future may be multi-modal and learning at scale remains computationally expensive for video processing. To address both challenges, our key insight is to leverage the large-scale pretraining of image diffusion models which can handle multi-modality. We repurpose image models for video prediction by conditioning on new frame timestamps. Such models can be trained with videos of both static and dynamic scenes. To allow them to be trained with modestly-sized datasets, we introduce invariances by factoring out illumination and texture by forcing the model to predict (pseudo) depth, readily obtained for in-the-wild videos via off-the-shelf monocular depth networks. In fact, we show that simply modifying networks to predict grayscale pixels already improves the accuracy of video prediction. Given the extra controllability with timestamp conditioning, we propose sampling schedules that work better than the traditional autoregressive and hierarchical sampling strategies. Motivated by probabilistic metrics from the object forecasting literature, we create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes and a large vocabulary of objects. Our experiments illustrate the effectiveness of learning to condition on timestamps, and show the importance of predicting the future with invariant modalities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.