Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A $τ$-preconditioner for space fractional diffusion equation with non-separable variable coefficients (2404.11390v1)

Published 17 Apr 2024 in math.NA and cs.NA

Abstract: In this paper, we study a $\tau$-matrix approximation based preconditioner for the linear systems arising from discretization of unsteady state Riesz space fractional diffusion equation with non-separable variable coefficients. The structure of coefficient matrices of the linear systems is identity plus summation of diagonal-times-multilevel-Toeplitz matrices. In our preconditioning technique, the diagonal matrices are approximated by scalar identity matrices and the Toeplitz matrices are approximated by {\tau}-matrices (a type of matrices diagonalizable by discrete sine transforms). The proposed preconditioner is fast invertible through the fast sine transform (FST) algorithm. Theoretically, we show that the GMRES solver for the preconditioned systems has an optimal convergence rate (a convergence rate independent of discretization stepsizes). To the best of our knowledge, this is the first preconditioning method with the optimal convergence rate for the variable-coefficients space fractional diffusion equation. Numerical results are reported to demonstrate the efficiency of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube