Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A $τ$-preconditioner for space fractional diffusion equation with non-separable variable coefficients (2404.11390v1)

Published 17 Apr 2024 in math.NA and cs.NA

Abstract: In this paper, we study a $\tau$-matrix approximation based preconditioner for the linear systems arising from discretization of unsteady state Riesz space fractional diffusion equation with non-separable variable coefficients. The structure of coefficient matrices of the linear systems is identity plus summation of diagonal-times-multilevel-Toeplitz matrices. In our preconditioning technique, the diagonal matrices are approximated by scalar identity matrices and the Toeplitz matrices are approximated by {\tau}-matrices (a type of matrices diagonalizable by discrete sine transforms). The proposed preconditioner is fast invertible through the fast sine transform (FST) algorithm. Theoretically, we show that the GMRES solver for the preconditioned systems has an optimal convergence rate (a convergence rate independent of discretization stepsizes). To the best of our knowledge, this is the first preconditioning method with the optimal convergence rate for the variable-coefficients space fractional diffusion equation. Numerical results are reported to demonstrate the efficiency of the proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.