Finding $d$-Cuts in Graphs of Bounded Diameter, Graphs of Bounded Radius and $H$-Free Graphs (2404.11389v3)
Abstract: The $d$-Cut problem is to decide if a graph has an edge cut such that each vertex has at most $d$ neighbours at the opposite side of the cut. If $d=1$, we obtain the intensively studied Matching Cut problem. The $d$-Cut problem has been studied as well, but a systematic study for special graph classes was lacking. We initiate such a study and consider classes of bounded diameter, bounded radius and $H$-free graphs. We prove that for all $d\geq 2$, $d$-Cut is polynomial-time solvable for graphs of diameter $2$, $(P_3+P_4)$-free graphs and $P_5$-free graphs. These results extend known results for $d=1$. However, we also prove several NP-hardness results for $d$-Cut that contrast known polynomial-time results for $d=1$. Our results lead to full dichotomies for bounded diameter and bounded radius and to almost-complete dichotomies for $H$-free graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.