Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finding $d$-Cuts in Graphs of Bounded Diameter, Graphs of Bounded Radius and $H$-Free Graphs (2404.11389v3)

Published 17 Apr 2024 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: The $d$-Cut problem is to decide if a graph has an edge cut such that each vertex has at most $d$ neighbours at the opposite side of the cut. If $d=1$, we obtain the intensively studied Matching Cut problem. The $d$-Cut problem has been studied as well, but a systematic study for special graph classes was lacking. We initiate such a study and consider classes of bounded diameter, bounded radius and $H$-free graphs. We prove that for all $d\geq 2$, $d$-Cut is polynomial-time solvable for graphs of diameter $2$, $(P_3+P_4)$-free graphs and $P_5$-free graphs. These results extend known results for $d=1$. However, we also prove several NP-hardness results for $d$-Cut that contrast known polynomial-time results for $d=1$. Our results lead to full dichotomies for bounded diameter and bounded radius and to almost-complete dichotomies for $H$-free graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.