Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

WPS-Dataset: A benchmark for wood plate segmentation in bark removal processing (2404.11051v2)

Published 17 Apr 2024 in cs.CV

Abstract: Using deep learning methods is a promising approach to improving bark removal efficiency and enhancing the quality of wood products. However, the lack of publicly available datasets for wood plate segmentation in bark removal processing poses challenges for researchers in this field. To address this issue, a benchmark for wood plate segmentation in bark removal processing named WPS-dataset is proposed in this study, which consists of 4863 images. We designed an image acquisition device and assembled it on a bark removal equipment to capture images in real industrial settings. We evaluated the WPS-dataset using six typical segmentation models. The models effectively learn and understand the WPS-dataset characteristics during training, resulting in high performance and accuracy in wood plate segmentation tasks. We believe that our dataset can lay a solid foundation for future research in bark removal processing and contribute to advancements in this field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: