Papers
Topics
Authors
Recent
2000 character limit reached

A LayoutLMv3-Based Model for Enhanced Relation Extraction in Visually-Rich Documents (2404.10848v1)

Published 16 Apr 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Document Understanding is an evolving field in NLP. In particular, visual and spatial features are essential in addition to the raw text itself and hence, several multimodal models were developed in the field of Visual Document Understanding (VDU). However, while research is mainly focused on Key Information Extraction (KIE), Relation Extraction (RE) between identified entities is still under-studied. For instance, RE is crucial to regroup entities or obtain a comprehensive hierarchy of data in a document. In this paper, we present a model that, initialized from LayoutLMv3, can match or outperform the current state-of-the-art results in RE applied to Visually-Rich Documents (VRD) on FUNSD and CORD datasets, without any specific pre-training and with fewer parameters. We also report an extensive ablation study performed on FUNSD, highlighting the great impact of certain features and modelization choices on the performances.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.