Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The General and Finite Satisfiability Problems for PCTL are Undecidable (2404.10648v1)

Published 16 Apr 2024 in cs.LO

Abstract: The general/finite PCTL satisfiability problem asks whether a given PCTL formula has a general/finite model. We show that the finite PCTL satisfiability problem is undecidable, and the general PCTL satisfiability problem is even highly undecidable (beyond the arithmetical hierarchy). Consequently, there are no sound deductive systems proving all generally/finitely valid PCTL formulae.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. The MIT Press.
  2. C. Baier and M. Kwiatkowska. 1998. Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11, 3 (1998), 125–155.
  3. Bounded Satisfiability for PCTL. In Proceedings of CSL 2012 (Leibniz International Proceedings in Informatics, Vol. 16). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 92–106.
  4. A. Bianco and L. de Alfaro. 1995. Model Checking of Probabilistic and Nondeterministic Systems. In Proceedings of FST&TCS’95 (Lecture Notes in Computer Science, Vol. 1026). Springer, 499–513.
  5. P. Billingsley. 1995. Probability and Measure. Wiley.
  6. Stochastic Games with Branching-Time Winning Objectives. In Proceedings of LICS 2006. IEEE Computer Society Press, 349–358.
  7. The Satisfiability Problem for Probabilistic CTL. In Proceedings of LICS 2008. IEEE Computer Society Press, 391–402.
  8. Controller Synthesis and Verification for Markov Decision Processes with Qualitative Branching Time Objectives. In Proceedings of ICALP 2008, Part II (Lecture Notes in Computer Science, Vol. 5126). Springer, 148–159.
  9. On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In Proceedings of STACS 2005 (Lecture Notes in Computer Science, Vol. 3404). Springer, 145–157.
  10. S. Chakraborty and J.P. Katoen. 2016. On the Satisfiability of Some Simple Probabilistic Logics. In Proceedings of LICS 2016. 56–65.
  11. M. Chodil and A. Kučera. 2024. The Satisfiability Problem for a Quantitative Fragment of PCTL. J. Comput. System Sci. 139 (2024), 103478.
  12. E.A. Emerson. 1991. Temporal and Modal Logic. Handbook of Theoretical Computer Science B (1991), 995–1072.
  13. Model-Checking Probabilistic Pushdown Automata. Logical Methods in Computer Science 2, 1:2 (2006), 1–31.
  14. K. Etessami and M. Yannakakis. 2012. Model Checking of Recursive Probabilistic Systems. ACM Transactions on Computational Logic 13 (2012). Issue 2.
  15. H. Hansson and B. Jonsson. 1994. A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6 (1994), 512–535.
  16. D. Harel. 1986. Effective Transformations on Infinite Trees with Applications to High Undecidability Dominoes, and Fairness. Journal of the Association for Computing Machinery 33, 1 (1986).
  17. S. Hart and M. Sharir. 1984. Probabilistic Temporal Logic for Finite and Bounded Models. In Proceedings of POPL’84. ACM Press, 1–13.
  18. M. Huth and M.Z. Kwiatkowska. 1997. Quantitative Analysis and Model Checking. In Proceedings of LICS’97. IEEE Computer Society Press, 111–122.
  19. S. Kraus and D.J. Lehmann. 1983. Decision Procedures for Time and Chance (Extended Abstract). In Proceedings of FOCS’83. IEEE Computer Society Press, 202–209.
  20. J. Křetínský and A. Rotar. 2018. The Satisfiability Problem for Unbounded Fragments of Probabilistic CTL. In Proceedings of CONCUR 2018 (Leibniz International Proceedings in Informatics, Vol. 118). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 32:1–32:16.
  21. Boundedness problems for Minsky counter machines. Programming and Computer Software 36, 1 (2010), 3–10.
  22. D. Lehmann and S. Shelah. 1982. Reasoning with Time and Chance. Information and Control 53 (1982), 165–198.
  23. R. Webster. 1994. Convexity. Oxford University Press.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.