Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On $τ$-preconditioners for a quasi-compact difference scheme to Riesz fractional diffusion equations with variable coefficients (2404.10221v1)

Published 16 Apr 2024 in math.NA and cs.NA

Abstract: In the present study, we consider the numerical method for Toeplitz-like linear systems arising from the $d$-dimensional Riesz space fractional diffusion equations (RSFDEs). We apply the Crank-Nicolson (CN) technique to discretize the temporal derivative and apply a quasi-compact finite difference method to discretize the Riesz space fractional derivatives. For the $d$-dimensional problem, the corresponding coefficient matrix is the sum of a product of a (block) tridiagonal matrix multiplying a diagonal matrix and a $d$-level Toeplitz matrix. We develop a sine transform based preconditioner to accelerate the convergence of the GMRES method. Theoretical analyses show that the upper bound of relative residual norm of the preconditioned GMRES method with the proposed preconditioner is mesh-independent, which leads to a linear convergence rate. Numerical results are presented to confirm the theoretical results regarding the preconditioned matrix and to illustrate the efficiency of the proposed preconditioner.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.