Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integration of Federated Learning and Blockchain in Healthcare: A Tutorial (2404.10092v1)

Published 15 Apr 2024 in cs.CR

Abstract: Wearable devices and medical sensors revolutionize health monitoring, raising concerns about data privacy in ML for healthcare. This tutorial explores FL and BC integration, offering a secure and privacy-preserving approach to healthcare analytics. FL enables decentralized model training on local devices at healthcare institutions, keeping patient data localized. This facilitates collaborative model development without compromising privacy. However, FL introduces vulnerabilities. BC, with its tamper-proof ledger and smart contracts, provides a robust framework for secure collaborative learning in FL. After presenting a taxonomy for the various types of data used in ML in medical applications, and a concise review of ML techniques for healthcare use cases, this tutorial explores three integration architectures for balancing decentralization, scalability, and reliability in healthcare data. Furthermore, it investigates how BCFL enhances data security and collaboration in disease prediction, medical image analysis, patient monitoring, and drug discovery. By providing a tutorial on FL, blockchain, and their integration, along with a review of BCFL applications, this paper serves as a valuable resource for researchers and practitioners seeking to leverage these technologies for secure and privacy-preserving healthcare ML. It aims to accelerate advancements in secure and collaborative healthcare analytics, ultimately improving patient outcomes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube