Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Average Spectrum Norm and Near-Optimal Tensor Completion (2404.10085v2)

Published 15 Apr 2024 in cs.IT and math.IT

Abstract: We introduce a new tensor norm, the average spectrum norm, to study sample complexity of tensor completion problems based on the canonical polyadic decomposition (CPD). Properties of the average spectrum norm and its dual norm are investigated, demonstrating their utility for low-rank tensor recovery analysis. Our novel approach significantly reduces the provable sample rate for CPD-based noisy tensor completion, providing the best bounds to date on the number of observed noisy entries required to produce an arbitrarily accurate estimate of an underlying mean value tensor. Under Poisson and Bernoulli multivariate distributions, we show that an $N$-way CPD rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in\mathbb{R}{I\times \cdots\times I}$ generating noisy observations can be approximated by large likelihood estimators from $\mathcal{O}(IR2\log{N+2}(I))$ revealed entries. Furthermore, under nonnegative and orthogonal versions of the CPD we improve the result to depend linearly on the rank, achieving the near-optimal rate $\mathcal{O}(IR\log{N+2}(I))$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.