Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Design and Analysis of Efficient Attention in Transformers for Social Group Activity Recognition (2404.09964v1)

Published 15 Apr 2024 in cs.CV and cs.LG

Abstract: Social group activity recognition is a challenging task extended from group activity recognition, where social groups must be recognized with their activities and group members. Existing methods tackle this task by leveraging region features of individuals following existing group activity recognition methods. However, the effectiveness of region features is susceptible to person localization and variable semantics of individual actions. To overcome these issues, we propose leveraging attention modules in transformers to generate social group features. In this method, multiple embeddings are used to aggregate features for a social group, each of which is assigned to a group member without duplication. Due to this non-duplicated assignment, the number of embeddings must be significant to avoid missing group members and thus renders attention in transformers ineffective. To find optimal attention designs with a large number of embeddings, we explore several design choices of queries for feature aggregation and self-attention modules in transformer decoders. Extensive experimental results show that the proposed method achieves state-of-the-art performance and verify that the proposed attention designs are highly effective on social group activity recognition.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.