Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series (2404.09871v4)

Published 15 Apr 2024 in cs.LG, cs.SY, and eess.SY

Abstract: Online unsupervised detection of anomalies is crucial to guarantee the correct operation of cyber-physical systems and the safety of humans interacting with them. State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition, evaluating the discrepancy between a normal model of the system (with no anomalies) and the real-time stream of sensor time series. However, large training data and time are typically required, and explainability is still a challenge to identify the root of the anomaly and implement predictive maintainance. In this paper, we use causal discovery to learn a normal causal graph of the system, and we evaluate the persistency of causal links during real-time acquisition of sensor data to promptly detect anomalies. On two benchmark anomaly detection datasets, we show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures and correctly identifies the sources of >10 different anomalies. The code is at https://github.com/Isla-lab/causal_anomaly_detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. H. Chen, “Applications of cyber-physical system: a literature review,” Journal of Industrial Integration and Management, vol. 2, no. 03, p. 1750012, 2017.
  2. R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, “Cyber-physical systems and their security issues,” Computers in Industry, vol. 100, pp. 212–223, 2018.
  3. S. Tan, J. M. Guerrero, P. Xie, R. Han, and J. C. Vasquez, “Brief survey on attack detection methods for cyber-physical systems,” IEEE Systems Journal, vol. 14, no. 4, pp. 5329–5339, 2020.
  4. A. Graß, C. Beecks, and J. A. C. Soto, “Unsupervised anomaly detection in production lines,” in Machine Learning for Cyber Physical Systems: Selected papers from the International Conference ML4CPS 2018, pp. 18–25, Springer, 2019.
  5. Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. Yao, “Deep learning-based anomaly detection in cyber-physical systems: Progress and opportunities,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–36, 2021.
  6. A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A review on outlier/anomaly detection in time series data,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–33, 2021.
  7. L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, and K.-R. Müller, “A unifying review of deep and shallow anomaly detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.
  8. C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 1409–1416, 2019.
  9. L. Brigato, R. Sartea, S. Simonazzi, A. Farinelli, L. Iocchi, and C. Napoli, “Exploiting time dynamics for one-class and open-set anomaly detection,” in Artificial Intelligence and Soft Computing: 20th International Conference, ICAISC 2021, Virtual Event, June 21–23, 2021, Proceedings, Part II 20, pp. 137–148, Springer, 2021.
  10. Y. Chernyshov, “About explainable machine learning models for anomaly detection in cyber-physical systems,” in International Conference on Intelligent Information Technologies for Industry, pp. 106–114, Springer, 2023.
  11. C. K. Assaad, E. Devijver, and E. Gaussier, “Survey and evaluation of causal discovery methods for time series,” Journal of Artificial Intelligence Research, vol. 73, pp. 767–819, 2022.
  12. G. Menegozzo, D. Dall’Alba, and P. Fiorini, “Industrial time series modeling with causal precursors and separable temporal convolutions,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6939–6946, 2021.
  13. C. S. Wickramasinghe, K. Amarasinghe, D. L. Marino, C. Rieger, and M. Manic, “Explainable unsupervised machine learning for cyber-physical systems,” IEEE Access, vol. 9, pp. 131824–131843, 2021.
  14. W. Tang, J. Liu, Y. Zhou, and Z. Ding, “Causality-guided counterfactual debiasing for anomaly detection of cyber-physical systems,” IEEE Transactions on Industrial Informatics, 2023.
  15. J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, “Detecting and quantifying causal associations in large nonlinear time series datasets,” Science Advances, vol. 5, no. 11, 2019.
  16. J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support research in the design of secure water treatment systems,” in Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99, Springer, 2017.
  17. A. K. Pandey, R. Gelin, and A. Robot, “Pepper: The first machine of its kind,” IEEE Robotics & Automation Magazine, vol. 25, no. 3, pp. 40–48, 2018.
  18. J. Runge, “Causal network reconstruction from time series: From theoretical assumptions to practical estimation,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 7, 2018.
  19. J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M. Kretschmer, M. D. Mahecha, J. Muñoz-Marí, et al., “Inferring causation from time series in earth system sciences,” Nature communications, vol. 10, no. 1, p. 2553, 2019.
  20. C. Schmidt, J. Huegle, and M. Uflacker, “Order-independent constraint-based causal structure learning for gaussian distribution models using gpus,” in Proceedings of the 30th International Conference on Scientific and Statistical Database Management, pp. 1–10, 2018.
  21. J. Runge, “Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information,” in International Conference on Artificial Intelligence and Statistics, pp. 938–947, PMLR, 2018.
  22. M. Conti, D. Donadel, and F. Turrin, “A survey on industrial control system testbeds and datasets for security research,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2248–2294, 2021.
  23. A. Castellini, F. Masillo, D. Azzalini, F. Amigoni, and A. Farinelli, “Adversarial data augmentation for hmm-based anomaly detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  24. M. Olivato, O. Cotugno, L. Brigato, D. Bloisi, A. Farinelli, and L. Iocchi, “A comparative analysis on the use of autoencoders for robot security anomaly detection,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 984–989, IEEE, 2019.
  25. G. Li and J. J. Jung, “Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges,” Information Fusion, vol. 91, pp. 93–102, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube