Eliminating Crossings in Ordered Graphs (2404.09771v1)
Abstract: Drawing a graph in the plane with as few crossings as possible is one of the central problems in graph drawing and computational geometry. Another option is to remove the smallest number of vertices or edges such that the remaining graph can be drawn without crossings. We study both problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order. In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge must be drawn on one of several pages of a book such that every edge has at most a fixed number of crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using more pages. The minimum number of pages needed to draw an ordered graph without any crossings is its (fixed-vertex-order) page number. We show that the page number of an ordered graph with $n$ vertices and $m$ edges can be computed in $2m \cdot n{O(1)}$ time. An $O(\log n)$-approximation of this number can be computed efficiently. We can decide in $2{O(d \sqrt{k} \log (d+k))} \cdot n{O(1)}$ time whether it suffices to delete $k$ edges of an ordered graph to obtain a $d$-planar layout (where every edge crosses at most $d$ other edges) on one page. As an additional parameter, we consider the size $h$ of a hitting set, that is, a set of points on the spine such that every edge, seen as an open interval, contains at least one of the points. For $h=1$, we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order page number $p$. For $h>1$, we give an XP algorithm with respect to $h+p$. Finally, we consider spine+$t$-track drawings, where some but not all vertices lie on the spine. The vertex order on the spine is given; we must map every vertex that does not lie on the spine to one of $t$ tracks, each of which is a straight line on a separate page, parallel to the spine.
- Finding minimum-cost flows by double scaling. Math. Progr., 53:243–266, 1992. doi:10.1007/BF01585705.
- The mixed page number of graphs. Theoret. Comput. Sci., 931:131–141, 2022. doi:10.1016/j.tcs.2022.07.036.
- On the 3-coloring of circle graphs. In M. Bekos and M. Chimani, editors, Proc. Int. Symp. Graph Drawing & Network Vis. (GD), volume 14465 of LNCS, pages 152–160. Springer, 2023. URL: https://arxiv.org/abs/2309.02258, doi:10.1007/978-3-031-49272-3_11.
- R. Bellman. Dynamic programming treatment of the travelling salesman problem. J. ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.
- On bounded-degree vertex deletion parameterized by treewidth. Discrete Appl. Math., 160(1):53–60, 2012. doi:j.dam.2011.08.013.
- Parameterized algorithms for book embedding problems. J. Graph Algorithms Appl., 24(4):603–620, 2020. doi:10.7155/jgaa.00526.
- Fourier meets Möbius: Fast subset convolution. In D. S. Johnson and U. Feige, editors, Proc. 39th Ann. ACM Symp. Theory Comput. (STOC), pages 67–74, 2007. doi:10.1145/1250790.1250801.
- S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.
- Beyond outerplanarity. In F. Frati and K.-L. Ma, editors, Proc. 25th Int. Symp. Graph Drawing & Network Vis. (GD), volume 10692 of LNCS, pages 546–559. Springer, 2018. URL: https://arxiv.org/abs/1708.08723, doi:10.1007/978-3-319-73915-1_42.
- Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebr. Discrete Meth., 8(1):33–58, 1987. doi:10.1137/0608002.
- Algorithms. McGraw-Hill, 2008.
- Preprocessing for outerplanar vertex deletion: An elementary kernel of quartic size. Algorithmica, 84(11):3407–3458, 2022. doi:10.1007/s00453-022-00984-2.
- Z. Dvořák and S. Norin. Treewidth of graphs with balanced separations. J. Comb. Theory, Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.
- A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141–1158, 2011. doi:10.1016/j.jcss.2010.12.001.
- F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks, 3(3):261–273, 1973. doi:10.1002/net.3230030305.
- M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285–302, 2004. doi:10.1016/j.jcss.2003.07.008.
- A near-optimal planarization algorithm. In C. Chekuri, editor, Proc. Ann. ACM-SIAM Symp. Discrete Algorithms (SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.
- B. M. P. Jansen and M. Włodarczyk. Lossy planarization: a constant-factor approximate kernelization for planar vertex deletion. In S. Leonardi and A. Gupta, editors, Proc. 54th Ann. ACM Symp. Theory Comput. (STOC), pages 900–913, 2022. doi:10.1145/3519935.3520021.
- K. Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. Ann. IEEE Symp. Foundat. Comput. Sci. (FOCS), pages 639–648, 2009. doi:10.1109/FOCS.2009.45.
- K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In D. S. Johnson and U. Feige, editors, Proc. 39th Ann. ACM Symp. Theory Comput. (STOC), pages 382–390, 2007. doi:10.1145/1250790.1250848.
- Y. Kobayashi and H. Tamaki. A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization. Algorithmica, 72:778–790, 2015. doi:10.1007/s00453-014-9872-x.
- Y. Kobayashi and H. Tamaki. A faster fixed parameter algorithm for two-layer crossing minimization. Inform. Process. Lett., 116(9):547–549, 2016. doi:j.ipl.2016.04.012.
- M. Lampis and M. Vasilakis. Structural parameterizations for two bounded degree problems revisited. CoRR, abs/2304.14724, 2023. doi:10.48550/arXiv.2304.14724.
- Parameterized algorithms for fixed-order book drawing with bounded number of crossings per edge. In W. Wu and Z. Zhang, editors, Proc. 14th Int. Conf. Combin. Optim. Appl. (COCOA), volume 12577 of LNCS, pages 562–576. Springer, 2020. doi:10.1007/978-3-030-64843-5_38.
- On parameterized algorithms for fixed-order book thickness with respect to the pathwidth of the vertex ordering. Theor. Comput. Sci., 873:16–24, 2021. doi:10.1016/j.tcs.2021.04.021.
- Faster parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.
- D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica, 62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.
- Crossing minimization in linear embeddings of graphs. IEEE Trans. Computers, 39(1):124–127, 1990. doi:10.1109/12.46286.
- N. Nash and D. Gregg. An output sensitive algorithm for computing a maximum independent set of a circle graph. Inf. Process. Lett., 110(16):630–634, 2010. doi:10.1016/j.ipl.2010.05.016.
- Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math., 152(1-3):229–245, 2005. doi:10.1016/j.dam.2005.02.029.
- Finding odd cycle transversals. Oper. Res. Lett., 32(4):299–301, 2004. doi:10.1016/J.ORL.2003.10.009.
- Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybernetics, 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.
- W. Unger. On the k𝑘kitalic_k-colouring of circle-graphs. In R. Cori and M. Wirsing, editors, Proc. 5th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 294 of LNCS, pages 61–72. Springer, 1988. doi:10.1007/BFb0035832.
- W. Unger. The complexity of colouring circle graphs. In A. Finkel and M. Jantzen, editors, Proc. 9th Ann. Symp. Theoret. Aspects Comput. Sci. (STACS), volume 577 of LNCS, pages 389–400. Springer, 1992. doi:10.1007/3-540-55210-3_199.
- G. Valiente. A new simple algorithm for the maximum-weight independent set problem on circle graphs. In T. Ibaraki, N. Katoh, and H. Ono, editors, Proc. Int. Symp. Algorithms Comput. (ISAAC), volume 2906 of LNCS, pages 129–137. Springer, 2003. doi:10.1007/978-3-540-24587-2_15.
- M. Xiao. On a generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci., 84:97–106, 2017. doi:10.1016/j.jcss.2016.08.003.
- M. Zehavi. Parameterized analysis and crossing minimization problems. Comput. Sci. Rev., 45:100490, 2022. doi:10.1016/j.cosrev.2022.100490.