Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generative AI for Game Theory-based Mobile Networking (2404.09699v2)

Published 15 Apr 2024 in cs.GT

Abstract: With the continuous advancement of network technology, various emerging complex networking optimization problems have created a wide range of applications utilizing game theory. However, since game theory is a mathematical framework, game theory-based solutions often rely heavily on the experience and knowledge of human experts. Recently, the remarkable advantages exhibited by generative artificial intelligence (GAI) have gained widespread attention. In this work, we propose a novel GAI-enabled game theory solution that combines the powerful reasoning and generation capabilities of GAI to the design and optimization of mobile networking. Specifically, we first outline the game theory and key technologies of GAI, and explore the advantages of combining GAI with game theory. Then, we review the contributions and limitations of existing research and demonstrate the potential application values of GAI applied to game theory in mobile networking. Subsequently, we develop a LLM-enabled game theory framework to realize this combination, and demonstrate the effectiveness of the proposed framework through a case study in secured UAV networks. Finally, we provide several directions for future extensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. P. Lai, Q. He, F. Chen, M. Abdelrazek, J. Hosking, J. Grundy, and Y. Yang, “Online user and power allocation in dynamic NOMA-based mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 11, pp. 6676–6689, November 2023.
  2. S. Mao, Y. Cai, Y. Xia, W. Wu, X. Wang, F. Wang, T. Ge, and F. Wei, “Alympics: LLM agents meet game theory – Exploring strategic decision-making with AI agents,” arXiv preprint arXiv:2311.03220, 2023.
  3. C. Fan, J. Chen, Y. Jin, and H. He, “Can large language models serve as rational players in game theory? A systematic analysis,” in Proc. AAAI Conf. Artif. Intell., vol. 38, no. 16, March 2024, pp. 17 960–17 967.
  4. J. Duan, R. Zhang, J. Diffenderfer, B. Kailkhura, L. Sun, E. Stengel-Eskin, M. Bansal, T. Chen, and K. Xu, “Gtbench: Uncovering the strategic reasoning limitations of LLMs via game-theoretic evaluations,” arXiv preprint arXiv:2402.12348, 2024.
  5. F. Guo, “GPT agents in game theory experiments,” arXiv preprint arXiv:2305.05516, 2023.
  6. H. Zou, Q. Zhao, L. Bariah, M. Bennis, and M. Debbah, “Wireless multi-agent generative AI: From connected intelligence to collective intelligence,” arXiv preprint arXiv:2307.02757, 2023.
  7. Z. Wu, S. Zheng, Q. Liu, X. Han, B. I. Kwon, M. Onizuka, S. Tang, R. Peng, and C. Xiao, “Shall we talk: Exploring spontaneous collaborations of competing LLM agents,” arXiv preprint arXiv:2402.12327, 2024.
  8. I. Gemp, Y. Bachrach, M. Lanctot, R. Patel, V. Dasagi, L. Marris, G. Piliouras, and K. Tuyls, “States as strings as strategies: Steering language models with game-theoretic solvers,” arXiv preprint arXiv:2402.01704, 2024.
  9. X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, and S. Guo, “Joint task offloading and resource optimization in NOMA-based vehicular edge computing: A game-theoretic DRL approach,” J. Syst. Archit., vol. 134, p. 102780, January 2023.
  10. M. S. Abegaz, H. N. Abishu, Y. H. Yacob, T. A. Ayall, A. Erbad, and M. Guizani, “Blockchain-based resource trading in multi-UAV-assisted industrial IoT networks: A multi-agent DRL approach,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 1, pp. 166–181, March 2023.
  11. J. Kang, Y. Zhong, M. Xu, J. Nie, J. Wen, H. Du, D. Ye, X. Huang, D. Niyato, and S. Xie, “Tiny multi-agent DRL for twins migration in UAV metaverses: A multi-leader multi-follower Stackelberg game approach,” IEEE Internet Things J., pp. 1–1, 2024.
  12. Y. Babichenko, S. Barman, and R. Peretz, “Simple approximate equilibria in large games,” in Proc. ACM EC, 2014, pp. 753–770.
  13. A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-RAG: Learning to retrieve, generate, and critique through self-reflection,” arXiv preprint arXiv:2310.11511, 2023.
  14. H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, “A survey on generative diffusion models,” IEEE Trans. on Knowl. Data Eng., pp. 1–20, 2024.
  15. J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated network: A survey,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2714–2741, Fourthquarter 2018.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com