Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Generalization the parameters of minimal linear codes over the ring $\mathbb{Z}_{p^l}$ and $\mathbb{Z}_{{p_1}{p_2}}$ (2404.09561v3)

Published 15 Apr 2024 in cs.IT, math.IT, and math.RA

Abstract: In this article, We introduce a condition that is both necessary and sufficient for a linear code to achieve minimality when analyzed over the rings $\mathbb{Z}{n}$.The fundamental inquiry in minimal linear codes is the existence of a $[m,k]$ minimal linear code where $k$ is less than or equal to $m$. W. Lu et al. ( see \cite{nine}) showed that there exists a positive integer $m(k;q)$ such that for $m\geq m(k;q)$ a minimal linear code of length $m$ and dimension $k$ over a finite field $\mathbb{F}_q$ must exist. They give the upper and lower bound of $m(k;q)$. In this manuscript, we establish both an upper and lower bound for $m(k;pl)$ and $m(k;p_1p_2)$ within the ring $\mathbb{Z}{pl}$ and $\mathbb{Z}_{p_1p_2}$ respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube