EQO: Exploring Ultra-Efficient Private Inference with Winograd-Based Protocol and Quantization Co-Optimization (2404.09404v1)
Abstract: Private convolutional neural network (CNN) inference based on secure two-party computation (2PC) suffers from high communication and latency overhead, especially from convolution layers. In this paper, we propose EQO, a quantized 2PC inference framework that jointly optimizes the CNNs and 2PC protocols. EQO features a novel 2PC protocol that combines Winograd transformation with quantization for efficient convolution computation. However, we observe naively combining quantization and Winograd convolution is sub-optimal: Winograd transformations introduce extensive local additions and weight outliers that increase the quantization bit widths and require frequent bit width conversions with non-negligible communication overhead. Therefore, at the protocol level, we propose a series of optimizations for the 2PC inference graph to minimize the communication. At the network level, We develop a sensitivity-based mixed-precision quantization algorithm to optimize network accuracy given communication constraints. We further propose a 2PC-friendly bit re-weighting algorithm to accommodate weight outliers without increasing bit widths. With extensive experiments, EQO demonstrates 11.7x, 3.6x, and 6.3x communication reduction with 1.29%, 1.16%, and 1.29% higher accuracy compared to state-of-the-art frameworks SiRNN, COINN, and CoPriv, respectively.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.