Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Momentum-based gradient descent methods for Lie groups (2404.09363v1)

Published 14 Apr 2024 in math.OC, cs.LG, cs.NA, math.DG, and math.NA

Abstract: Polyak's Heavy Ball (PHB; Polyak, 1964), a.k.a. Classical Momentum, and Nesterov's Accelerated Gradient (NAG; Nesterov, 1983) are well know examples of momentum-descent methods for optimization. While the latter outperforms the former, solely generalizations of PHB-like methods to nonlinear spaces have been described in the literature. We propose here a generalization of NAG-like methods for Lie group optimization based on the variational one-to-one correspondence between classical and accelerated momentum methods (Campos et al., 2023). Numerical experiments are shown.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: