Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compass: Large Multilingual Language Model for South-east Asia (2404.09220v1)

Published 14 Apr 2024 in cs.CL

Abstract: LLMs have exhibited significant proficiency in languages endowed with extensive linguistic resources, such as English and Chinese. Nevertheless, their effectiveness notably diminishes when applied to languages characterized by limited linguistic resources, particularly within the Southeast Asian linguistic landscape, such as Indonesian. The scarcity of linguistic resources for these languages presents challenges associated with inadequate training, restricted vocabulary coverage, and challenging evaluation processes. In response to these exigencies, we have introduced CompassLLM, a large multilingual model specifically tailored for Southeast Asian languages, with the primary aim of supporting the developmental requirements of Shopee. Our methodology encompasses several key strategies. To progressively enhance multilingual proficiencies, we implemented a multi-stage pre-training strategy integrated with curriculum learning, gradually intensifying the focus on low-resource languages. Concurrently, to better accommodate low-resource human instructions, we curated and generated a repository of high-quality multilingual human instructions, culminating the CompassLLM-SFT model through supervised instruction fine-tuning. Finally, to reinforce the model's alignment with human preference behaviors, we have embraced the principle of Direct Preference Optimization (DPO) to obtain CompassLLM-DPO model. Preliminary evaluation of the CompassLLM model yields promising results, with our model surpassing benchmark models like Vicuna-7b-v1.5, Sealion, Falcon and SeaLLM, across diverse evaluation tasks, as verified through both automated and human-driven assessments. Notably, our model exhibits its superior performance in South-east Asia languages, such as Indonesian language.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube