Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CuriousLLM: Elevating Multi-Document Question Answering with LLM-Enhanced Knowledge Graph Reasoning (2404.09077v3)

Published 13 Apr 2024 in cs.CL, cs.AI, cs.IR, and cs.LG

Abstract: LLMs have achieved significant success in open-domain question answering. However, they continue to face challenges such as hallucinations and knowledge cutoffs. These issues can be mitigated through in-context learning by providing LLMs with relevant context before generating answers. Recent literature proposes Knowledge Graph Prompting (KGP) which integrates knowledge graphs with an LLM-based traversal agent to substantially enhance document retrieval quality. However, KGP requires costly fine-tuning with large datasets and remains prone to hallucination. In this paper, we propose CuriousLLM, an enhancement that integrates a curiosity-driven reasoning mechanism into an LLM agent. This mechanism enables the agent to generate relevant follow-up questions, thereby guiding the information retrieval process more efficiently. Central to our approach is the development of the new Follow-upQA dataset, which includes questions and supporting evidence as input, with follow-up questions serving as ground truths. These follow-up questions either inquire about what is still missing to fully answer the user's query or use special tokens to signify that the retrieved evidence is sufficient. Our experiments show that CuriousLLM significantly boosts LLM performance in multi-document question answering (MD-QA), circumventing the substantial computational costs and latency from the original KGP framework.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube