Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ContactDexNet: Multi-fingered Robotic Hand Grasping in Cluttered Environments through Hand-object Contact Semantic Mapping (2404.08844v3)

Published 12 Apr 2024 in cs.RO and cs.AI

Abstract: The deep learning models has significantly advanced dexterous manipulation techniques for multi-fingered hand grasping. However, the contact information-guided grasping in cluttered environments remains largely underexplored. To address this gap, we have developed a method for generating multi-fingered hand grasp samples in cluttered settings through contact semantic map. We introduce a contact semantic conditional variational autoencoder network (CoSe-CVAE) for creating comprehensive contact semantic map from object point cloud. We utilize grasp detection method to estimate hand grasp poses from the contact semantic map. Finally, an unified grasp evaluation model PointNetGPD++ is designed to assess grasp quality and collision probability, substantially improving the reliability of identifying optimal grasps in cluttered scenarios. Our grasp generation method has demonstrated remarkable success, outperforming state-of-the-art methods by at least 4.65% with 81.0% average grasping success rate in real-world single-object environment and 75.3% grasping success rate in cluttered scenes. We also proposed the multi-modal multi-fingered grasping dataset generation method. Our multi-fingered hand grasping dataset outperforms previous datasets in scene diversity, modality diversity. The dataset, code and supplementary materials can be found at https://sites.google.com/view/contact-dexnet.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: