Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CEM: A Data-Efficient Method for Large Language Models to Continue Evolving From Mistakes (2404.08707v7)

Published 11 Apr 2024 in cs.LG, cs.AI, and cs.CL

Abstract: As world knowledge advances and new task schemas emerge, Continual Learning (CL) becomes essential for keeping LLMs current and addressing their shortcomings. This process typically involves continual instruction tuning (CIT) and continual pre-training (CPT) to enable these models to adapt to novel tasks and acquire critical knowledge. However, collecting sufficient CPT data and efficiently bridging knowledge gaps remain significant challenges. Inspired by the 'summarizing mistakes' strategy, we propose the Continue Evolving from Mistakes (CEM) method, a data-efficient approach aiming to collect CPT data and continually improve LLMs' performance through iterative evaluation and supplementation with mistake-relevant knowledge. To further optimize data usage and mitigate forgetting, we introduce a novel training paradigm that combines CIT and CPT. Experiments show that CEM substantially enhances multiple models' performance on both in-domain and out-of-domain QA tasks, achieving gains of up to 29.63%. Code and datasets are available on https://anonymous.4open.science/r/cem-BB25.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube