Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Sequence-to-Sequence Modeling with Attention by Leveraging Deep Learning Architectures for Enhanced Contextual Understanding in Abstractive Text Summarization (2404.08685v1)

Published 8 Apr 2024 in cs.CL and cs.LG

Abstract: Automatic text summarization (TS) plays a pivotal role in condensing large volumes of information into concise, coherent summaries, facilitating efficient information retrieval and comprehension. This paper presents a novel framework for abstractive TS of single documents, which integrates three dominant aspects: structural, semantic, and neural-based approaches. The proposed framework merges machine learning and knowledge-based techniques to achieve a unified methodology. The framework consists of three main phases: pre-processing, machine learning, and post-processing. In the pre-processing phase, a knowledge-based Word Sense Disambiguation (WSD) technique is employed to generalize ambiguous words, enhancing content generalization. Semantic content generalization is then performed to address out-of-vocabulary (OOV) or rare words, ensuring comprehensive coverage of the input document. Subsequently, the generalized text is transformed into a continuous vector space using neural language processing techniques. A deep sequence-to-sequence (seq2seq) model with an attention mechanism is employed to predict a generalized summary based on the vector representation. In the post-processing phase, heuristic algorithms and text similarity metrics are utilized to refine the generated summary further. Concepts from the generalized summary are matched with specific entities, enhancing coherence and readability. Experimental evaluations conducted on prominent datasets, including Gigaword, Duc 2004, and CNN/DailyMail, demonstrate the effectiveness of the proposed framework. Results indicate significant improvements in handling rare and OOV words, outperforming existing state-of-the-art deep learning techniques. The proposed framework presents a comprehensive and unified approach towards abstractive TS, combining the strengths of structure, semantics, and neural-based methodologies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube